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The scaffold allows one to relate the 
mesoscopic (homological) structure of 
a network to its local constituents, 
highlighting which links are crucial to 
the global pattern.

Minimal Homology Bases 
Recent work by Dey et al. [4] allows one to compute in polynomial time, for 
the 1-dimensional case, the minimal representatives of the homology basis 
cycles, i.e. a set 

{bi} = argmin 
Span{[bi]}=H1

∑
i

μ(bi)

where           is the length of cycle     , intended as 
the sum of its weights. 
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Fig.7 The top 4 neurons of C.Elegans by node strength in the minimal scaffold 
(ratio on average strength). 

Fig.3 The shortest 
representatives of two 
generators of      .H1

Fig.8 For several network metrics the standard scaffold reproduces the statistical 
properties of the minimal one in C.Elegans. Others are unreliable, due to the 
different construction mechanisms.  

• We define the minimal homological scaffold of a weighted network as the 
weighted graph on the same set of nodes, and having as edges those 
belonging to those cycles that, at some filtration step, are the minimal 
representative of a homology class.  

• Weight is assigned for each time an edge belongs to a minimal cycle.

Fig.9 Node strength distribution of the 
scaffolds for the Watts-Strogatz 
random model (parameters as in [2]). 
The tight localization of cycles makes 
for a statistically larger fraction of node 
with high strength. 
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• First introduced in [1] as a method for network skeletonization.  
• Defined for a non-negatively weighted network as the weighted graph, on 

the same set of nodes as the original, composed of all the cycles that are 
generators of the 1-dimensional persistent homology of the associated 
clique complex, filtered by edge weight.  

• Weighted by the number of times an edge belongs to a persistent cycle. 
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Fig.1 (Courtesy of [3]) 
A filtration of 
simplicial complexes 
(a), the generators of 
the persistent 
homology (b), and the 
resulting homological 
scaffold (c).

• The scaffold depends on a choice 
of representative cycles. 

• Different choices are possible with 
the same filtration, and a choice of 
generators as in Fig.2 (a) would 
lead to the scaffold in Fig.2 (b) 
from the same input (weights 
differ).
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Fig.2 A different choice of generators 
(a) for the filtration in Fig.1 (a), leading 
to a different scaffold (b).

On the other hand, the arbitrariness 
introduced by the choice of 
representative cycles makes this 
relation inaccurate.

Addressed Problem

Fig.4 Given the filtration in Fig.1 (a), this is 
the only possible choice of minimal 
generators, leading necessarily to the 
scaffold in Fig.1 (c).

 Minimal Scaffold

Computational Complexity 
• Dey’s algorithm has a worst-case 

complexity of order 9 in the number of 
points ([4]). 

•  Its computation is therefore largely more 
demanding than the generic case, for 
which superlinear algorithms are 
available. 

Fig.5 Scaffolds computation times for a 
family of Watts-Strogatz random 

networks [2] on a laptop computer 
(Params k=N/10, p=0.025). 

The minimal scaffold is 
mathematically well-defined, 
unique up to few pathological 
cases, and reproduces tightly the 
geometry of the input.

At the same time, its computation is 
way more demanding than the 
standard one.

Fig.6 The standard (b) and minimal (c) scaffolds 
of a metric graph (a), whose weights are 
distances in the Euclidean plane.
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 Method

 Homological Scaffold

We have provided a new mathematically principled method for a topology- 
driven network skeletonization. We have observed that for many graph metrics 
the minimal scaffold has high correlation with the less computationally 
intensive, non-minimal scaffold which, therefore, is often a good enough 
approximation. We plan to further explore other approaches to canonicity in the 
choice of a homology basis. 

 Conclusions and Future Directions

Testing the minimal scaffold on real-world data and random models: 
• It can precisely identify nodes of crucial importance for the global structure. 
• Comparison: can the standard scaffold approximate the minimal?

The minimal scaffold is mathematically 
well-defined, unique up to few 
pathological cases, and reproduces 
tightly the geometry of the input.

At the same time, its computation is 
largely more demanding than the 
standard one.

Goal 
  To obtain a “canonical” homology basis, which allows us to define a scaffold in a principled, unique manner.   


