

SHREC 2021: Retrieval and classification of protein surfaces equipped with physical and chemical properties

Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, Walter Rocchia, Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, David Hunter, Evangelia I. Zacharaki, Eleftheria Psatha, Dimitrios Laskos Gerasimos Arvanitis, Konstantinos Moustakas, Tunde Aderinwale, Charles Christoffer, Woong-Hee Shin, Daisuke Kihara, Andrea Giachetti, Huu-Nghia Nguyen, Tuan-Duy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai-Dang Nguyen and Minh-Triet Tran

3D Object Retrieval 2021 (3DOR'21) POR FSE Liguria 2014-2020

Motivation

Proteins are generally thought to adopt unique structures determined by their amino acid sequences, which are crucial for their functions. However, proteins are not strictly static objects, but rather populate **ensembles of conformations**.


```
CALMODULIN-1
```

THIOREDOXIN

Recognising a protein from an ensemble of geometries can be assumed to mean capturing the **features that are unique** to it. It is preliminary to the definition of a geometry-based notion of similarity, and, subsequently, complementarity, between proteins.

ELSEVIER	Contents lists avail Computers journal homepage: www	able at ScienceDirect & Graphics w.elsevier.com/locate/ceg
Special Section on 3DOR	2021	
SHREC 2021 Track equipped with phy	: Retrieval and classific sical and chemical pro	ation of protein surfaces
Laportoni , tacyler as Alexies , Gera Charles Christoffer , Wu Huu-Nghia Nguyen J., T Danh Le-Thanh ¹ , Hai-L Thamb Alexiestic Alexies To COXET for Landstrain and Comment Constraints and Comments and Commen- tation and Comments and Comment Comment of Description and Comment Com	simos Arvanitis": Konstantin omg-Hee Shini (Daisuke Khin Luan-Duy Nguyen ^{1,1} , Unihn-Tinuy ang Nguyen ^{1,2} , Minh-Tinu Ta- tagi generative statistic statistic statistic constants. It ships chosen, hiy att labored, smaller, tet hipporreg, laboreny fores. Neur Core et laborety, west sidjoret, 154 (Diperting, Listering Yorks, Neur Core et laborety, west sidjoret, 154 (Diperting, Listering Yorks, Neur Ethology, Statistica, S	is Moustalas ⁺ , Tunde Aderinwale ⁺ , Frank Andera Glachetti ⁺ , en Nguyen-Truong ¹⁺ , mit ditr Rueche. Genee, Italy auk ditr Rueche. Genee, Italy
A R T I C L E I N F O Artick Matery: Review 1 April 2021 Review 1 28 May 2021 Available online 25 June 2021 Available online 25 June 2021 Reywork: SHRC Protein strafaces Protein satifaces Prot	A B S T R A C T This paper presents the met sification of protein surface the context is to assess the formations of the same pro- surfaces. We addressed two with the inclusion of physic bidly, and the presence of the with respect to the single p a number of information re	beich hast lower gartrichantel in the STREC 2021 control on retrieval and clut- es the basis of Their generativy and physicochemical paperties. The gard c- cipability of different comparational approaches to indextry different con- train, or the presence of common sub-parts, starting from a set of molecular physicos. Comparativa approaches to indextry different con- train, or the startistic set of the starting and the starting generativa physicos houd doness and acceptors. Retrieval and classification performance entries or the existence of common sub-sequences, are analyzed according triefal indicators. C 2021 Elsevier Ltd. All rights reserve:
and an and an an an an and an and a second a		for its function. However, every protein during its time evolution explores a much larger part of the conformational space. The mos

Unione Europea Fondo europeo sociale

The benchmark

The dataset

- 5,128 triangle meshes of protein surfaces:
 - ★ Available in the OFF¹ format
 - * Approximate the Solvent Excluded Surface (SES)
 - * Computed by NanoShaper [1]
 - ★ Pre-split: 70% training set, 30% test set
- For each surface, **three physicochemical proteins** were approximated at its vertices:
 - (a) Electrostatic potential Delphi [2,3]

Own routines

- (b) Hydrophobicity
- (c) Hydrogen bond donors
 - and acceptors

¹ <u>https://segeval.cs.princeton.edu/public/off_format.html</u>

The dataset

- 5,128 triangle meshes of protein surfaces:
 - ★ Available in the OFF¹ format
 - ★ Approximate the Solvent Excluded Surface (SES).
 - * Computed by NanoShaper [1]
 - ★ Pre-split: 70% training set, 30% test set
- For each surface, **three physicochemical proteins** were approximated at its vertices:

 - (b) Hydrophobicity(c) Hydrogen bond donorsOwn routines
 - and acceptors

¹ <u>https://segeval.cs.princeton.edu/public/off_format.html</u>

The ground truth

Evaluation of the results will be based on two ground truths:

- A 2-level classification of the dataset (PDB-based classification)
- A 4-level classification of the dataset (BLAST-based classification)

PDB-based classification Two protein surfaces are conformations of the same protein if and only if they refer to the same PDB code.

BLAST-based classification We introduce a less strict classification on the basis of the concept of sequence similarity λ :

- Extremely similar $\longrightarrow 95 \% \le \lambda$ AND at least 50 aligned residuals
- Highly related $\longrightarrow 35\% \le \lambda < 95\%$ AND at least 50 aligned residuals
- Similar $\longrightarrow 28\% \le \lambda < 35\%$ AND at least 50 aligned residuals
- Dissimilar $\longrightarrow \lambda < 28 \%$ OR less than 50 aligned residuals

Obtained classes are refined for ensuring transitivity.

NodesConnected\$components\$\$PDB-basedBLAST-basedclassesclasses

The accuracy measures

- Retrieval measures:
 - ★ Precision-recall curves and mean Average Precision (mAP)
 - ★ First and Second Tiers (1T, 2T)
 - * Normalized Discounted Cumulated Gain (NDCG)
 - ★ Average Dynamic Recall (ADR)
- Classification measures:
 - ★ True Positive and Negative Rates (TPR, TNR)
 - ★ Positive and Negative Predicted Values (PPV, NPV)
 - ★ Accuracy (ACC)
 - ★ F1-score

Unione Europea Fondo europeo sociale

Proposed methods

Proposed methods

- P1: "Joint histograms of curvatures, local properties and area projection transform" by Andrea Giachetti
- P2: "3D Zernike descriptors" by Tunde Aderinwale, Charles Christoffer, Woong-Hee Shin, and Daisuke Kihara
- P3: "Hybrid Augmented Point Pair Signatures and Histogram of Processed Physicochemical Properties of Protein molecules" by Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, and David Hunter
- P4: "Global and Local Feature fit" by Evangelia I. Zacharaki, Eleftheria Psatha, Dimitrios Laskos, Gerasimos Arvanitis, and Konstantinos Moustakas
- **P5: "Message-Passing Graph Convolutional Neural Networks (MPGCNNs) and PointNet**" by Huu-Nghia Nguyen, Tuan-Duy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai- Dang Nguyen, and Minh-Triet Tran

Two tasks were proposed to the participants, with up to three runs per task:

Task A: only the OFF files of the models are to be considered (i.e., only the geometry). **Task B:** in addition to the geometry, physicochemical properties are to be considered.

P1: "Joint histograms of curvatures, local properties and area projection transform"

- Use of surface properties (curvatures+attributes) combined with joint histograms
- Combined with volumetric (symmetry) features: Area Projection Transform (Giachetti & Lovato 2012)
- Test of supervised dimensionality reduction (Linear Discriminant Analysis)
 - ★ Using training set labels
 - ★ Not effective (different classes)

P2: "3D Zernike descriptors"

	NN	1T	2T								
Validation Results											
SHAPE: EXTRACTOR	0.854	0.788	0.442								
SHAPE: AVG of											
(EXTRACTOR&End2End)	0.862	0.785	0.442								
SHAPE: AVG of (E2E &											
EUCLID. of 3DZD)	0.894	0.822	0.447								
SHAPE+Phys:											
EXTRACTOR	0.889	0.858	0.456								
SHAPE+Phys: AVG of											
(EXTRACTOR & EUCLID)	0.899	0.861	0.457								
SHAPE+Phys: AVG of											
(EXTRACTOR&E2E)	0.894	0.870	0.459								

- Shape only: 3ZD for protein surface only
- Shape + Phys: 3D3Z for protein surface and physicochemical properties

- Total number of (training) surfaces provided: 3,585
- Training-validation set split : 80%/20%
- Total number of validation proteins: 717
- Out of 717*716/2 pairs, 10,436 pairs were used for validation

P3: "Hybrid Augmented Point Pair Signatures and Histogram of Processed Physicochemical Properties of Protein molecules "

Two separate retrieval strategies for the two different tasks

Task A: Hybrid Augmented Point Pair Signature (HAPPS)

 A 3D geometric shape descriptor combining a collection of normalized vectors between the point of the surface and its centroid with the local geometry around each point

Task B: Histogram of Processed Physicochemical Properties of Protein following an Exploratory Data Analysis (**HP4-EDA**)

 Strategy based on a descriptive statistics (DS) of the 3D physicochemical variables, following an exploratory data analysis (EDA) of each of them.

Ш

Task

F2

F3

potential

Hydropathy

Free electrons

Exploratory data analysis

Physicochemical properties Dataset (Task B)

ata DS / EDA Understatistics & Pre-processing Histogram Histogram HP4-EDA Descriptor

Concatenation

P4: "Global and Local Feature fit"

NL-DR: Non-Linear Dimensionality Reduction \rightarrow tSNE **Shape Index** = $\frac{2}{\pi}tan^{-1}\frac{k_1 + k_2}{k_1 - k_2}$ where k_1 , k_2 ($k_1 \ge k_2$) are the principal curvature values **For each of the 3 physicochemical properties**: global histogram characteristics (mean intensity, standard deviation, mode of histogram, kurtosis, skewness, and energy)

P5: "Message-Passing Graph Convolutional Neural Networks (MPGCNNs) and PointNet "

Strategy based on the use **graph neural networks** (**GNNs**): a deep learning based methods operating on generalized graph domains rather than on Euclidean ones

Two main network architectures have been adopted:

- EdgeConv. The module that performs the graph message-passing function is a dynamic variant of edge convolution
- PointNet. Two message-passing modules each containing a MLP block that uses ReLU as activation function

Unione Europea Fondo europeo sociale

Evaluation and results

Results – PDB-based (2-level) classification

From the classification measures:

- All methods have TNR higher than TPR ------- more reliable in finding true negatives
- All methods have NPV higher than TPV more reliable in reporting negatives
- Accuracy is high (always above 95%), but F1-score is a better indicator (classes are unbalanced!)
- Physicochemical properties can bring additional information, but it does NOT always mean an improvement

	Geometry							Geometry and physicochemical properties						
	method	TPR	TNR	PPV	NPV	ACC	F1	method	TPR	TNR	PPV	NPV	ACC	F1
P1: Joint histograms	run 1	0.8373	0.9967	0.8401	0.9973	0.9941	0.8354	run 1	0.9825	0.9997	0.9860	0.9997	0.9994	0.9832
	run 2	0.9475	0.9991	0.9489	0.9992	0.9983	0.9467	run 2	0.9890	0.9999	0.9921	0.9999	0.9998	0.9893
	run 3	0.9274	0.9990	0.9304	0.9988	0.9974	0.9239	run 3	0.5839	0.9885	0.6086	0.9912	0.9807	0.5727
P2: 3D Zernike + ML	run 1	0.9145	0.9979	0.9159	0.9984	0.9965	0.9119	run 1	0.9514	0.9989	0.9525	0.9992	0.9981	0.9504
	run 2	0.8944	0.9975	0.8977	0.9976	0.9954	0.8931	run 2	0.9469	0.9989	0.9470	0.9991	0.9981	0.9460
	run 3	0.9242	0.9983	0.9253	0.9985	0.9969	0.9222	run 3	0.9793	0.9995	0.9819	0.9996	0.9991	0.9791
P3: Point pair signature	run 1	0.9196	0.9985	0.9205	0.9986	0.9971	0.9169	run 1	0.9015	0.9977	0.9037	0.9979	0.9957	0.9007
	run 2	0.930 0	0.9982	0.9333	0.9988	0.9971	0.9276	run 2	0.9216	0.9985	0.9238	0.9987	0.9974	0.9207
	run 3	0.9222	0.9982	0.9258	0.9986	0.9969	0.9199	run 3	0.9015	0.9979	0.9005	0.9985	0.9966	0.8987
P4: Global & Local Fit	run 1	0.9274	0.9983	0.9284	0.9987	0.9971	0.9262	run 1	0.9410	0.9987	0.9424	0.9990	0.9978	0.9406
	run 2	0.9268	0.9983	0.9277	0.9987	0.9971	0.9252	run 2	0.9410	0.9988	0.9422	0.9990	0.9978	0.9409
	run 3	0.9067	0.9979	0.9059	0.9983	0.9963	0.9046	run 3	0.9326	0.9984	0.9336	0.9988	0.9974	0.9323
P5: Graph CNN	run 1 run 2 run 3	0.7537 0.4362 0.7123	0.9944 0.9870 0.9927	0.7539 0.4412 0.7109	0.9943 0.9873 0.9930	0.9892 0.9754 0.9868	0.7507 0.4328 0.7044	run 1	0.7187	0.9937	0.7215	0.9940	0.9886	0.7160

Results – BLAST-based (4-level) classification

From the classification measures:

- As expected, decreasing the number of classes improves the classification performance
- The improvement takes place despite only PDB-based classification being available to the participants (maybe not surprising, as the number of classes is reduced)

	Geometry							Geometry and physicochemical properties						
	method	TPR	TNR	PPV	NPV	ACC	$\mathbf{F1}$	method	TPR	TNR	PPV	NPV	ACC	F1
-	run 1	0.9086	0.9949	0.9082	0.9959	0.9917	0.9069	run 1	0.9961	0.9998	0.9962	1.0000	0.9997	0.9960
P1: Joint histograms	run 2 run 3	0.9890 0.9844	$0.9996 \\ 0.9996$	0.9891 0.9869	0.9996 <mark>0.9997</mark>	$0.9993 \\ 0.9993$	0.9888 0.9840	run 2 run 3	0.9981 0.8529	1.0000 0.9904	0.9981 0.8562	1.0000 0.9931	1.0000 0.9854	0.9980 0.8452
P2: 3D Zernike + ML	run 1 run 2 run 3	0.9760 0.9728 0.9767	0.9992 0.9991 0.9985	0.9766 0.9746 0.9770	0.9993 0.9991 0.9989	0.9985 0.9983 0.9977	0.9758 0.9723 0.9764	run 1 run 2 run 3	0.9929 0.9909 0.9987	0.9997 0.9998 0.9999	0.9930 0.9909 0.9987	0.9999 0.9999 1.0000	0.9996 0.9997 0.9999	0.9928 0.9908 0.9987
- P3: Point pair signatures	run 1 run 2 run 3	0.9689 0.9747 0.9721	0.9981 0.9980 0.9987	0.9690 0.9754 0.9738	0.9985 0.9989 0.9985	0.9970 0.9972 0.9976	0.9680 0.9740 0.9716	run 1 run 2 run 3	0.9942 0.9916 0.9806	0.9996 0.9997 0.9981	0.9943 0.9921 0.9809	0.9999 0.9998 0.9994	0.9995 0.9996 0.9980	0.9942 0.9916 0.9803
P4: Global & Local Fit	run 1 run 2 run 3	0.9799 0.9793 0.9734	0.9987 0.9987 0.9984	0.9805 0.9801 0.9738	0.9991 0.9990 0.9987	0.9980 0.9979 0.9974	0.9798 0.9791 0.9732	run 1 run 2 run 3	0.9903 0.9903 0.9870	0.9995 0.9995 0.9993	0.9909 0.9908 0.9876	0.9996 0.9996 0.9994	0.9992 0.9991 0.9988	0.9904 0.9904 0.9871
P5: Graph CNN	run 1 run 2 run 3	0.9209 0.7168 0.9047	0.9953 0.9852 0.9944	0.9209 0.7201 0.9031	0.9958 0.9853 0.9953	0.9923 0.9734 0.9910	0.9197 0.7156 0.9019	run 1	0.9501	0.9975	0.9506	0.9988	0.9968	0.9491

Results – PDB- and BLAST-based classifications

Unexpectedly, the two ground truths have much in common:

- Methods are good but not optimal: highest mAP score is 0.87 (only geometry) and 0.96 (geometry + chemistry) —> e.g., P2
- The strong heterogeneity of the class size has influenced prediction accuracy, especially for learning-based methods —> e.g., P5
- Physicochemical properties can provide additional information, but one must be careful how to use it —> e.g., P1, run 3
- Deep learning does NOT guarantee a better performance (risk to overfit data!) —> e.g., P5

Conclusions

- W.r.t. previous contests on protein retrieval, we have taken into account physicochemical properties, provided the participants of a training set and a test set, and proposed different ground truths
- The number of registered teams (8) and of actual participants (5) shows the interest of the community to the problem, despite some difficulties
- The methods present a satisfactory variety in terms of the paradigms nowadays popular

We are underway to apply for the replicability stamp. The benchmark will be available at: <u>https://github.com/rea1991/SHREC2021</u>

Thanks for your attention!

You can reach me at andrea.raffo@ge.imati.cnr.it

References

[1] S. Decherchi and W. Rocchia. A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. *PLoS ONE*, vol.8, no. 4, pp. 1-15, 2013.

[2] W. Rocchia, E. Alexov, and B. Honig. "Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions". *The Journal of Physical Chemistry B*, vol. 105, no. 28, pp. 6507–6514, 2001.

[3] L. Wang, Z. Zhang, W. Rocchia, and E. Alexov, "Using delphi capabilities to mimic protein's conformational reorganization with amino acid specific dielectric constants," *Communications in Computational Physics*, vol. 13, no. 1, pp. 13–30, 2013.

[4] S. Fortunato, "Community detection in graphs," *Physics reports*, vol. 486, no. 3-5, pp. 75–174, 2010.