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Motivation
Proteins are generally thought to adopt unique structures determined by 
their amino acid sequences,  which are crucial for their functions.
However, proteins are not strictly static objects, but rather populate 
ensembles of conformations.

Recognising a protein from an ensemble of geometries can be assumed to 
mean capturing the features that are unique to it. It is preliminary to the 
definition of a geometry-based notion of similarity, and, subsequently, 
complementarity, between proteins.
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The dataset

• 5,128 triangle meshes of protein surfaces:

★ Available in the OFF1 format

★ Approximate the Solvent Excluded Surface (SES)

★ Computed by NanoShaper [1]

★ Pre-split: 70% training set, 30% test set

• For each surface, three physicochemical proteins were 
approximated at its vertices:


(a) Electrostatic potential

(b) Hydrophobicity

(c) Hydrogen bond donors  

and acceptors

Delphi [2,3]} Own routines

1 https://segeval.cs.princeton.edu/public/off_format.html
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BLAST-based classification We introduce a less strict classification on the basis 
of the concept of sequence similarity :

• Extremely similar                          AND at least 50 aligned residuals 

• Highly related                    AND at least 50 aligned residuals

• Similar                               AND at least 50 aligned residuals

• Dissimilar                                      OR less than 50 aligned residuals 

λ
95 % ≤ λ
35 % ≤ λ < 95 %
28 % ≤ λ < 35 %

λ < 28 %

The ground truth 
Evaluation of the results will be based on two ground truths:

• A 2-level classification of the dataset (PDB-based classification)

• A 4-level classification of the dataset (BLAST-based classification)

Obtained classes are refined for ensuring transitivity.
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PDB-based classification Two protein surfaces are conformations of the 
same protein if and only if they refer to the same PDB code. 



• Classification measures:

★ True Positive and Negative Rates (TPR, TNR)

★ Positive and Negative Predicted Values (PPV, NPV)

★ Accuracy (ACC)

★ F1-score

The accuracy measures

• Retrieval measures:

★ Precision-recall curves and mean Average Precision (mAP)

★ First and Second Tiers (1T, 2T)

★ Normalized Discounted Cumulated Gain (NDCG)

★ Average Dynamic Recall (ADR)

CALMODULIN 
DEPENDENT 
PROTEIN 
KINASE 
FRAGMENT

HUMAN 
THIOREDOXIN

HUMAN PRION 
PROTEIN 
VARIANT M166V   

C-TERMINAL 
NEGATIVE 
REGULATORY 
DOMAIN OF P53



Proposed methods

Unione Europea
Fondo europeo sociale



Proposed methods
• P1: “Joint histograms of curvatures, local properties and area projection transform” by Andrea Giachetti


• P2: “3D Zernike descriptors” by Tunde Aderinwale, Charles Christoffer, Woong-Hee Shin, and Daisuke Kihara


• P3: “Hybrid Augmented Point Pair Signatures and Histogram of Processed Physicochemical Properties of Protein 
molecules ” by Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, and David Hunter


• P4: “Global and Local Feature fit” by Evangelia I. Zacharaki, Eleftheria Psatha, Dimitrios Laskos, Gerasimos Arvanitis, and 
Konstantinos Moustakas


• P5: “Message-Passing Graph Convolutional Neural Networks (MPGCNNs) and PointNet ” by Huu-Nghia Nguyen, 
Tuan-Duy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai- Dang Nguyen, and Minh-Triet Tran

Two tasks were proposed to the participants, with up to three runs per task:


Task A: only the OFF files of the models are to be considered (i.e., only the geometry).

Task B: in addition to the geometry, physicochemical properties are to be considered.



P1: “Joint histograms of curvatures, local properties 
and area projection transform”

• Use of surface properties (curvatures+attributes) combined with joint histograms

• Combined with volumetric (symmetry) features: Area Projection Transform (Giachetti & Lovato 2012)

• Test of supervised dimensionality reduction (Linear Discriminant Analysis)


★ Using training set labels

★ Not effective (different classes) 



P2: “3D Zernike descriptors”

• Shape only: 3ZD for protein surface only

• Shape + Phys: 3D3Z for protein surface 

and physicochemical properties• Total number of (training) surfaces provided: 3,585

• Training-validation set split : 80%/20%

• Total number of validation proteins: 717

• Out of 717*716/2 pairs, 10,436 pairs were used for validation



P3: “Hybrid Augmented Point Pair Signatures and 
Histogram of Processed Physicochemical Properties 
of Protein molecules ”

Two separate retrieval strategies for the two different tasks


Task A: Hybrid Augmented Point Pair Signature (HAPPS)


• A 3D geometric shape descriptor combining a collection of 
normalized vectors between the point of the surface and 
its centroid with the local geometry around each point


Task B: Histogram of Processed Physicochemical Properties 
of Protein following an Exploratory Data Analysis (HP4-EDA)


• Strategy based on a descriptive statistics (DS) of the 3D 
physicochemical variables, following an exploratory data 
analysis (EDA) of each of them.
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P4: “Global and Local Feature fit”



P5: “Message-Passing Graph Convolutional Neural 
Networks (MPGCNNs) and PointNet ”
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Strategy based on the use graph neural networks (GNNs): a deep learning based methods operating on generalized 
graph domains rather than on Euclidean ones

Two main network architectures have been adopted: 

• EdgeConv. The module that performs the graph message-passing function is a dynamic variant of edge convolution

• PointNet. Two message-passing modules each containing a MLP block that uses ReLU as activation function
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Evaluation and results
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Results — PDB-based (2-level) classification
From the classification measures:

• All methods have TNR higher than TPR                      more reliable in finding true negatives

• All methods have NPV higher than TPV                      more reliable in reporting negatives

• Accuracy is high (always above 95%), but F1-score is a better indicator (classes are unbalanced!)

• Physicochemical properties can bring additional information, but it does NOT always mean an improvement

P4: Global & Local Fit

P5: Graph CNN

P1: Joint histograms

P2: 3D Zernike + ML

P3: Point pair signatures

Complete analysis 
in the paper!



Results — BLAST-based (4-level) classification

P4: Global & Local Fit

P5: Graph CNN

P1: Joint histograms

P2: 3D Zernike + ML

P3: Point pair signatures

Complete analysis 
in the paper!

From the classification measures:

• As expected, decreasing the number of classes improves the classification performance

• The improvement takes place despite only PDB-based classification being available to the participants (maybe not 

surprising, as the number of classes is reduced)



Results— PDB- and BLAST-based classifications
Unexpectedly, the two ground truths have much in 
common:

• Methods are good but not optimal: highest 

mAP score is  0.87 (only geometry) and 0.96 
(geometry + chemistry) —> e.g., P2


• The strong heterogeneity of the class size has 
influenced prediction accuracy, especially for 
learning-based methods —> e.g., P5


• Physicochemical properties can provide 
additional information, but one must be careful 
how to use it —> e.g., P1, run 3


• Deep learning does NOT guarantee a better 
performance (risk to overfit data!) —> e.g., P5  

Complete analysis 
in the paper!



Conclusions
• W.r.t. previous contests on protein retrieval, we have taken into 

account physicochemical properties, provided the participants 
of a training set and a test set, and proposed different ground 
truths


• The number of registered teams (8) and of actual participants (5) 
shows the interest of the community to the problem, despite 
some difficulties 

• The methods present a satisfactory variety in terms of the 
paradigms nowadays popular


Thanks for your attention!
You can reach me at andrea.raffo@ge.imati.cnr.it

We are underway to apply for the replicability stamp. The benchmark will 
be available at: https://github.com/rea1991/SHREC2021 
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