Topology-Aware Terrain Simplification

Ulderico Fugacci⁽¹⁾, Michael Kerber⁽¹⁾, Hugo Manet⁽²⁾ ⁽¹⁾ Graz University of Technology, ⁽²⁾ École Normale Supérieure (Paris)

By filtering T through the height function f, **Persistent Homology** enables the study of terrain morphology:

Topological Terrain Simplification: Topological terrain simplification consists in the removal of Images from [Bauer et al. 2012] low persistence pairs of critical points considered as topological noise

Geometrical Oversampling:	
Regions free of critical points represented through a high number of triangles	1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

**

Algorithm Steps:

- . Perform vertex removals that:
 - preserve the persistent homology of the terrain
- try to stay "as Delaunay as possible" as long as the reduced and the original terrains differ in L^{∞} -norm by at most a fixed threshold ε

2. Compute constrained Delaunay triangulation improving mesh quality and preserving persistent homology

Vertex Removal:

Given a regular vertex v to be removed and a re-triangulation of its star

Edge Flip:

Given a quadrilateral *abcd*,

ab is feasible if $I_{ab} \cap I_{cd} \neq \emptyset$

where I_{uv} is the interval of \mathbb{R} with extremal points f(u) and f(v)

Flipping a feasible edge does not change persistent homology

Experimental Results:

An edge *ab* of the re-triangulated star is **persistence-aware** if

for all $c \in H_{ab}$, $I_{ab} \cap I_{cv} \neq \emptyset$

where H_{ab} consists of the vertices of the star of v belonging to the region of plane induced by *ab* and not containing *v*

heorem

A re-triangulation of the star of v preserves persistent homology if all its edges are persistence-aware

References:

- F. luricich, L. De Floriani. Hierarchical Forman Triangulation: A multiscale model for scalar field analysis. Computers & Graphics 66 (2017): 113-123.
- T. K. Dey, R. Slechta. Edge contraction in persistence-generated discrete Morse vector fields. Computers & Graphics (2018).

- U. Bauer, C. Lange, M. Wardetzky. Optimal topological simplification of discrete functions on surfaces. Discrete & Computational Geometry 47.2 (2012): 347-377.

Time

30 s

4 min

4 min

Der Wissenschaftsfonds.