

Chunk Reduction for Multi-Parameter Persistent Homology

Multi-Parameter Persistent Homology

Multi-parameter persistence describes the *changes in homology* of datasets evolving along *two or more (independent)* scale parameters

Image courtesy of [Carlsson & Zomorodian 2009]

Multi-Parameter Persistent Homology

Formally:

Given a d-filtered chain complex $\, C := (C^p_*)_{p \in \mathbb{R}^d}$,

the *multi-parameter persistence* k^{th} *module* $H_k(C)$ consists of:

- A collection of *homology spaces* $H_k(C^p_*)$ for $p \in \mathbb{R}^d$
- A collection of *linear maps* $\iota_k^{p,q}: H_k(C^p_*) \to H_k(C^q_*)$ induced by the inclusion maps at *k*-chain level for $p,q \in \mathbb{R}^d$ and $p \leq q$

Multi-parameter persistent homology provides a *stable and*

Multi-Parameter Persistent Homology

TU Graz

Outline

- Multi-Chunk Algorithm
- Optimality Result
- Experimental Evaluation
- Conclusions and Future Developments

Inspired by the chunk algorithm for persistent homology [Bauer et al. 2014],

We propose a *reduction algorithm* such that

given a d-filtered chain complex $\,C\,$ returns a d-filtered chain complex $\,ar{C}\,$

- drastically smaller than C
- homology-equivalent to $\,C\,$

C and \overline{C} are *homology-equivalent* if, for any $k \in \mathbb{N}$ and any $p, q \in \mathbb{R}^d$ with $p \leq q$, $H_k(C^p_*)$ and $H_k(\overline{C}^p_*)$ are *isomorphic* via a map φ^p_k and each diagram

$$\begin{array}{cccc} H_k(C^p_*) & \longrightarrow & H_k(C^q_*) \\ & & & \downarrow \varphi^p_k & & \downarrow \varphi^q_k \\ H_k(\bar{C}^p_*) & \longrightarrow & H_k(\bar{C}^q_*) \end{array}$$

commutes where horizontal maps are induced by inclusion maps

Initialization:

Given a *d*-filtered simplicial complex,

each *k*-simplex σ can be represented by a *k*-column encoding:

Initialization:

Given a *d*-filtered simplicial complex,

each *k*-simplex σ can be represented by a *k*-column encoding:

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Multi-chunk algorithm offers an immediate *parallelization* scheme in shared memory and it consists of *three phases*:

I - Local Reduction

II - Compression

III - Removal of Local Pairs

Local Pivot:

A column σ has a *local pivot* iff the element τ with *maximal index* in the boundary of σ is such that $v(\tau)=v(\sigma)$

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Phase I: Local Reduction

Proceed in *decreasing dimension* k and traverse the k-columns in *increasing order w.r.t. i*

Goal: Label the columns as local or global

Given an *unlabeled* k-column σ , while

- σ has a local pivot and
- there is a *k*-column σ ' with the same local pivot and $i(\sigma) < i(\sigma')$

perform the *column addition* $\sigma \leftarrow \sigma + \lambda \sigma'$ (λ is s.t. the local pivot of σ disappears)

If, at the end of the loop, the column σ does not have a local pivot

- σ is labeled as global

otherwise,

- σ is labeled as *local negative* and its local pivot as *local positive*

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Phase II: Compression

. Goal: Simplify the boundary of the global columns

Given a *global* k-column σ , while

- the boundary of σ contains local positive or negative elements

pick the local (k-1)-column τ in the boundary of σ with maximal index i

If τ is *local negative*,

– remove au from the boundary of σ

If τ is local positive

- perform the column addition $\sigma \leftarrow \sigma + \lambda \sigma'$

where σ' is s.t. (τ,σ') is a local pair and λ is such that τ disappears

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Theorem

Remaining columns generate a d-filtered chain complex having the same multiparameter persistent homology as the input (they are homotopy-equivalent)

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Chunk Reduction for Multi-Parameter Persistent Homology

⁷ Multi-Chunk Algorithm

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019

Remarks

- In Phase I, to proceed in decreasing dimension avoids performing any column additions on local positive columns
- Algorithm operates independently on columns of the same value (called chunks)

Proposition

Multi-chunk algorithm has time complexity $O(m\ell^3 \log \ell + gn\ell \log \ell)$ and space complexity $O(n\ell + q^2)$ where:

- n is the size of the input complex
- m is the number of chunks
- ℓ is the maximal size of a chunk
- g is the number of global columns

Experimental Evaluation

We have experimentally compared the performances of our approach with the simplification process based on *discrete Morse theory* proposed in [Scaramuccia et al. 2018]

•	Size		Time (sec.)				Memory Usage (GB)	
Dataset	Input	Output	Chunk		DMT		Chunk	DMT
			Prep.	Simpl.	Prep.	Simpl.	Chunk	DWII
Eros	2.9 M	$202 \mathrm{K}$	1.7	0.8	2.7	15.8	0.36	0.46
Donna	3.0 M	$217 \mathrm{~K}$	1.8	0.8	2.8	16.9	0.38	0.48
Chinese Dragon	3.9 M	$321 \mathrm{K}$	2.5	1.1	3.9	22.3	0.52	0.64
Circular Box	4.2 M	$365 \mathrm{K}$	2.9	1.2	4.3	24.0	0.68	0.68
Ramesses	5.0 M	$407~{\rm K}$	3.4	1.3	5.5	29.4	0.68	0.81
Pensatore	6.0 M	$369~{\rm K}$	3.8	1.6	6.8	34.3	0.76	0.97
Raptor	6.0 M	$260 \mathrm{K}$	4.4	1.7	5.4	32.3	0.73	0.93
Neptune	12.0 M	$893~{ m K}$	8.4	4.4	14.9	69.2	1.52	1.94
Cube 1	590 K	$67 \mathrm{K}$	0.5	0.3	0.7	3.2	0.09	0.10
Cube 2	2.4 M	$264~{\rm K}$	1.8	1.1	2.6	13.1	0.35	0.40
Cube 3	9.4 M	$1.0 \ {\rm M}$	7.6	4.8	11.0	53.1	1.37	1.58
Cube 4	37.7 M	$4.2 {\rm M}$	31.9	19.4	44.9	216.0	5.50	6.32

Conclusions and Future Developments

In Summary:

We have presented a *pre-processing procedure* for improving the computation of multi-parameter persistent homology and we have provided *theoretical and experimental evidences of its effectiveness*

Future Directions:

- Develop a *parallel implementation* with shared memory of the multi-chunk algorithm
- Evaluate the impact of the chunk algorithm for the computation of the persistence module and of the persistence space
- Compare the proposed strategy with the *minimal presentation algorithm* for persistence modules from RIVET [Lesnick & Wright 2019]

Thank you

Ulderico Fugacci TU Graz, Institute of Geometry

www.geometrie.tugraz.it

commutes where horizontal maps are the inclusion maps

Ulderico Fugacci, Michael Kerber - Computational Geometry Week, Portland, June 19, 2019