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Kernel for 1-parameter Persistent Homology: 2-parameter Persistent Homology:
Given a topological space X filtered by a scalar function F, Given a topological space X filtered by a 2-parameter function F=(F,F>),

a feature map ¢ transforms the persistence diagram of (X, F) into a L?-function ¢
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This enables the definition of a kernel k(F,G) := (¢F, ¢G) 12

- establishing a notion of inner product of persistence diagrams
- opening TDA to applications in statistics and machine learning

Inspired by the matching distance [1], combine 1-parameter feature maps ¢g,
to define a kernel for 2-parameter persistent homology :
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Feature Map for 2-parameter Persistent Homology:

Let X be a topological space and let F' be a 2-parameter function filtering X. We define the feature map ¢(§) . R* — R, for any p,q € R2 with p<q, as
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where: T¢(p)
- ¢ is the line determined by p and ¢ Assumptions:
- mg(p), m¢(q)are the parameter values taken by p and ¢ as points of ¢ - p,q belong to a rectangle R ¢ R?

- wy is a weight associated to ¢ (close to O for almost vertical and almost horizontal lines) ; - there exists a value N such that, for any line ¢, Dgm(F7) has at most N off-diagonal points  ;
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Definition: Computability:
If there exists a constant 5>0, Let ¢ be a feature map for 1-parameter persistent homology that
such that, for any line ¢, ¢, is bounded by B, then - satisfies (%)
gbg) is well-defined, - Is Lipschitz
e gbé?) c L2(RY) and k(F,G) = gbg) . ¢(¢:2)du cR Given two topological spaces filtered by 2-parameter functions (X,F),
R4

(Y,G) of size n and a value € >0, the kernel k(F, G) can be computed

. up to an absolute error ¢
Stability: P

iIn polynomial time with respect to n and 1/¢
If there exists a constant ¢'> O such that, for any two 2-parameter

filtrations F, G of a topological space X and any p,q € R? with p<q

Genericity:
0, (me(p), me(q)) — b, (me(p), me(q))| < C - N - dp (ng(F £), ng(Gf)) (%) The introduced kernel enables the extension to the 2-parameter framework of
several kernels for 1-parameter persistent homology:

theﬂ, the kernel determlned by the fea.ture map ¢(2) |S Stable, T, “‘
.e., there exists a constant C"> 0O such that, for any two 2-parameter i - Persistence space-scale kernel [2] '
filtrations F, G of a topological space X, i - Persistence weighted Gaussian kernel [3]

- Persistence images [4]
- Persistence landscape [5]

162 — 62|12 < C'- N - Area(R) - |F — G|
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The definition, the stability and the computability of the 2-parameter kernels

where ||F — G|l = sup | F(z) — G(z)]2 derived from these 1-parameter kernels are achieved by the stated results
T
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