A Kernel for Multi-Parameter Persistence

René Corbet⁽¹⁾, Ulderico Fugacci⁽¹⁾, Michael Kerber⁽¹⁾, Claudia Landi⁽²⁾, Bei Wang⁽³⁾ ⁽¹⁾ Graz University of Technology, ⁽²⁾ University of Modena and Reggio Emilia, ⁽³⁾ University of Utah

Kernel for 1-parameter Persistent Homology:

Given a topological space X filtered by a scalar function F,

a feature map ϕ transforms the persistence diagram of (X,F) into a L^2 -function ϕ_F

2-parameter Persistent Homology:

Given a topological space X filtered by a 2-parameter function $F=(F_1,F_2)$,

for each line ℓ , it is possible to associate to (X,F)a persistence diagram $Dgm(F_{\ell})$ and, so, a L^2 -function $\phi_{F_{\ell}}$

This enables the definition of a kernel $k(F,G) := \langle \phi_F, \phi_G \rangle_{L^2}$

- establishing a notion of inner product of persistence diagrams

- opening TDA to applications in statistics and machine learning

- w_ℓ is a weight associated to ℓ (close to 0 for almost vertical and almost horizontal lines)

Definition:

If there exists a constant B>0,

such that, for any line ℓ , ϕ_{F_ℓ} is **bounded** by B, then

 $\phi_F^{(2)} \text{ is well-defined,}$ i.e., $\phi_F^{(2)} \in L^2(\mathbb{R}^4)$ and $k(F,G) = \int_{\mathbb{R}^4} \phi_F^{(2)} \cdot \phi_G^{(2)} d\mu \in \mathbb{R}$

Stability:

If there exists a constant C > 0 such that, for any two 2-parameter filtrations F, G of a topological space X and any $p, q \in \mathbb{R}^2$ with p < q

 $|\phi_{F_{\ell}}(\pi_{\ell}(p),\pi_{\ell}(q)) - \phi_{G_{\ell}}(\pi_{\ell}(p),\pi_{\ell}(q))| \le C \cdot N \cdot d_B(\operatorname{Dgm}(F_{\ell}),\operatorname{Dgm}(G_{\ell})) \quad (\bigstar)$

then, the **kernel** determined by the feature map $\phi^{(2)}$ is **stable**, i.e., there exists a constant C' > 0 such that, for any two 2-parameter filtrations F, G of a topological space X, - there exists a value N such that, for any line ℓ , $Dgm(F_{\ell})$ has at most N off-diagonal points

Computability:

Let ϕ be a feature map for 1-parameter persistent homology that

- satisfies (\bigstar)
- is Lipschitz

Given two topological spaces filtered by 2-parameter functions (X,F), (Y,G) of size n and a value $\varepsilon > 0$, the kernel k(F,G) can be computed up to an absolute error ε

in **polynomial time** with respect to n and $1/\epsilon$

Genericity:

The introduced kernel enables the extension to the 2-parameter framework of several kernels for 1-parameter persistent homology:

- Persistence space-scale kernel [2]

Persistence weighted Gaussian kernel [3]
Persistence images [4]
Persistence landscape [5]

The definition, the stability and the computability of the 2-parameter kernels derived from these 1-parameter kernels are achieved by the stated results

References:

- [1] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi. A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recognition Letters 32.14 (2011): 1735-1746.
- [2] J. Reininghaus, S. Huber, U. Bauer, R. Kwitt. A stable multi-scale kernel for topological machine learning. Proceedings of the IEEE conference on computer vision and pattern recognition (2015).
- [3] G. Kusano, Y. Hiraoka, K. Fukumizu. Persistence weighted Gaussian kernel for topological data analysis. International Conference on Machine Learning (2016).
- [4] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta, L. Ziegelmeier. Persistence images: A stable vector representation of persistent homology. The Journal of Machine Learning Research 18.1 (2017): 218-252.
- [5] P. Bubenik. Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research 16.1 (2015): 77-102.

Der Wissenschaftsfonds.