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 Computability:

 2-parameter Persistent Homology:

 Stability:

If there exists a constant C > 0 such that, for any two 2-parameter 
filtrations F,G of a topological space X and any p,q ∈ ℝ2 with p<q

then, the kernel determined by the feature map        is stable,�(2)

i.e., there exists a constant C’ > 0 such that, for any two 2-parameter 
filtrations F,G of a topological space X,

k�(2)
F � �(2)

G kL2  C 0 ·N ·Area(R) · kF �Gk1

where kF �Gk1 = sup
x2X

kF (x)�G(x)k2

 Feature Map for 2-parameter Persistent Homology:

 Kernel for 1-parameter Persistent Homology:

A Kernel for Multi-Parameter Persistence

 Definition:

Given a topological space X filtered by a 2-parameter function F=(F1,F2), Given a topological space X filtered by a scalar function F,  
a feature map    transforms the persistence diagram of (X,F) into a L2-function 𝜙F� �F
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Goal:

XF1

F2

Fl

for each line l,  
it is possible to associate to (X,F)  

a persistence diagram Dgm(Fl)  

and, so, a L2-function 𝜙Fl�F`

Let X be a topological space and let F be a 2-parameter function filtering X. We define the feature map                         , for any p,q ∈ ℝ2 with p<q, as

where: 

- l is the line determined by p and q  

-          ,          are the parameter values taken by p and q as points of l 

-       is a weight associated to l (close to 0 for almost vertical and almost horizontal lines)

⇡`(p) ⇡`(q)

w`

- p,q belong to a rectangle R ⊆ ℝ2 

- there exists a value N such that, for any line l,  Dgm(Fl) has at most N off-diagonal points

Assumptions:

�F`
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�(2)
F (p, q)
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 Genericity:

The introduced kernel enables the extension to the 2-parameter framework of 
several kernels for 1-parameter persistent homology:

The definition, the stability and the computability of the 2-parameter kernels 
derived from these 1-parameter kernels are achieved by the stated results

- Persistence space-scale kernel [2] 
- Persistence weighted Gaussian kernel [3] 
- Persistence images [4] 
- Persistence landscape [5]

(★)|�F`(⇡`(p),⇡`(q))� �G`(⇡`(p),⇡`(q))|  C ·N · dB
�
Dgm(F`),Dgm(G`)

�

This enables the definition of a kernel k((X,F), (Y,G)) := ⟨      ,       ⟩L2 

- establishing a notion of inner product of persistence diagrams 
- opening TDA to applications in statistics and machine learning

k(F,G) := h�F ,�GiL2

If there exists a constant B >0,  
such that, for any line l,         is bounded by B, then 

  is well-defined, 

i.e.,                         and

�(2)
F

�F`

�(2)
F 2 L2(R4)

Let    be a feature map for 1-parameter persistent homology that 

- satisfies (★) 

- is Lipschitz 

�

in polynomial time with respect to n and 1/𝜀

Given two topological spaces filtered by 2-parameter functions (X,F), 

(Y,G) of size n and a value 𝜀 >0, the kernel              can be computed  

up to an absolute error 𝜀                                                                     

k(F,G)

�(2)
F : R4 �! R

�(2)
F (p, q) := w` · �F`

�
⇡`(p),⇡`(q)

�

k(F,G) =

Z

R4

�(2)
F · �(2)

G dµ 2 R

Inspired by the matching distance [1], combine 1-parameter feature maps  𝜙Fl 
to define a kernel for 2-parameter persistent homology

�F`


