STAG 2016 - Smart Tools and Apps in computer Graphics

Persistent homology: a step-by-step introduction for newcomers

Ulderico Fugacci

University of Maryland Dept. of Computer Science

Joint work with:

Sara Scaramuccia, Federico Iuricich, and Leila De Floriani

Topological Data Analysis

"Data has shape and shape has meaning" Gunnar Carlsson

Topological Data Analysis (TDA) is that branch of mathematics concerned with characterizing the properties of a shape

One of the most **meaningful tool** in TDA is

Persistent Homology

Persistent Homology

Persistent homology allows for **describing the changes in the shape** of an evolving object

Combining:

Our Contribution

A threefold task:

Interactive website for beginners

Visualization tool for curious users

In-depth overview for interested researchers

Persistent Homology

Given a simplicial complex Σ , the *k*-homology group of Σ is defined as

$$H_k(\Sigma) := Z_k / B_k$$

where:

- * Z_k is the group of *k*-cycles of Σ
- * B_k is the group of *k*-boundaries of Σ

Persistent Homology

Given a simplicial complex Σ evolving according with a filtration,

The (p,q)-persistent k-homology group of Σ is defined as

 $H_k^{p,q}(\Sigma) := Im(i_k^{p,q})$

where $i_k^{p,q}$ is the map between $H_k(\Sigma^p)$ and $H_k(\Sigma^q)$ induced by the inclusion of Σ^p in Σ^q

Intuitively:

Persistent homology describes the *changes in homology* occurring during the filtration

Size Functions:

- *Estimation of natural pseudo-distance* between shapes endowed with a function *f*
- Tracking of the *connected components* of a shape along its evolution induced by *f*

Image from [Frosini 1992]

Actually, this coincides with *persistent homology in degree 0*

Incremental Algorithm for Betti Numbers:

- Introduction of the notion of *filtration*
- De facto computation of persistence pairs

Image from [Delfinado, Edelsbrunner 1995]

Image from [Robins 1999]

Topological Persistence:

- Introduction and algebraic formulation of the notion of *persistent homology*
- Description of an algorithm for computing persistent homology

Given a filtered simplicial complex Σ ,

Persistent homology of Σ can be visualized through:

Persistence diagrams [Edelsbrunner, Harer 2008]

Given a filtered simplicial complex Σ ,

Persistent homology of Σ can be visualized through:

- Persistence diagrams [Edelsbrunner, Harer 2008]
- *Barcodes* [Carlsson et al. 2005; Ghrist 2008]

Given a filtered simplicial complex Σ ,

Persistent homology of Σ can be visualized through:

- Persistence diagrams [Edelsbrunner, Harer 2008]
- Barcodes [Carlsson et al. 2005; Ghrist 2008]
- Persistence landscapes [Bubenik 2015]

Images from [Bubenik 2015]

Given a filtered simplicial complex Σ ,

Persistent homology of Σ can be visualized through:

- Persistence diagrams [Edelsbrunner, Harer 2008]
- Barcodes [Carlsson et al. 2005; Ghrist 2008]
- Persistence landscapes [Bubenik 2015]
- Corner points and lines [Frosini, Landi 2001]
- Half-open intervals [Edelsbrunner et al. 2002]
- *k-triangles* [Edelsbrunner et al. 2002]

Images from [Bubenik 2015]

Computing Persistent Homology

Standard algorithm to compute persistent homology [Zomorodian, Carlsson 2005]:

- Based on a matrix reduction
- Linear complexity in practical cases
- Super-cubical complexity in the worst case

Several different strategies:

Direct optimizations

- Zigzag persistent homology [Milosavljević et al. 2005]
- Computation with a twist [Chen, Kerber 2011]
- Dual algorithm [De Silvia et al. 2011]
- Output-sensitive algorithm [Chen, Kerber 2013]
- Multi-field algorithm [Boissonnat, Maria 2014]

Coarsening approaches

- Topological operators and simplifications [Mrozek, Wanner 2010; Dlotko, Wagner 2014]
- Morse-based approaches [Robins et al. 2011; Harker et al. 2014; Fugacci et al. 2014]

Distributed approaches

- Spectral sequences [Edelsbrunner, Harer 2008; Lipsky et al. 2011]
- *Multicore coreductions* [Murty et al. 2013]
- Multicore homology [Lewis, Zomorodian 2014]
- Persistent homology in chunks [Bauer et al. 2014a]
- Distributed persistent computation [Bauer et al. 2014b]

Annotation-based methods

- Compressed annotation matrix [Boissonnat et al. 2013]
- Persistence for simplicial maps [Dey et al. 2014]

Interactive User-Guide

We propose a web-based user-guide on persistent homology for beginners and researchers coming from other fields

Main Contributions:

- Intuitive and self-contained *introduction to persistent homology*
- Step-by-step *description of the standard algorithm* for computing persistent homology
- Overview of the state of the art in persistent homology

- Accessible language and elementary definitions
- Step-by-step descriptions of notions and algorithms
- Different colors for different tasks
- Interactive examples
- ✤ Focus on Z₂ coefficients and standard algorithm

Formalism & Completeness

- Self-contained and theoretically consistent
- Pseudo-code description of the algorithms
- Classification of the state of the art
- Insights on some relevant theoretical aspects
- Links to relevant contents and cited works

Web-GL Interface

We develop a visualization tool for studying persistence pairs on a triangulated surface

1. From a filtered simplicial complex Σ to its persistence pairs

2. From the persistence pairs of Σ to their visualization in an interactive interface

Web-GL Interface

- 1. Computing Persistent Homology
- Accepted input:
 - *Σ*, *triangulated surface* (supported formats: .ply, .off)
 - $f: \Sigma_0 \longrightarrow \mathbb{R}$, filtering function defined on the vertices of Σ
- Computation of the persistence pairs:
 - based on the *standard algorithm implemented in* **PHAT Library** [Bauer et al. 2013]

2. Visualizing Persistence Pairs

- Accepted input:
 - *Σ, triangulated surface* (supported formats: .ply)
 - *PP, list of the persistence pairs of* Σ (supported formats: .json)
- Visualization of the persistence pairs of Σ through:
 - 3D scene, implemented using the Threejs Library, a Javascript library based on Web-GL
 - *scatter plot,* implemented using the **Plotly Library**

Current and Future Developments

In Summary:

- A new approach for *spreading persistent homology as a practical tool* has been proposed
- It consists of:
 - Interactive web-based user-guide introducing persistent homology
 - Web-GL interface for analyzing persistence pairs on a triangulated surface
 - *In-depth overview* on the evolution of persistent homology and the state-of-the-art methods

What's Next?

- We are planning to *expand the user-guide and the visualization tool* including:
 - Morse theory
 - Forman's discrete Morse theory
 - Reeb graphs
- + Long-term goal: a shared framework where researchers can participate in building user-friendly guides

Ulderico Fugacci

University of Maryland, Dept. of Computer Science

Joint work with: Sara Scaramuccia, Federico Iuricich, and Leila De Floriani