SMI 2015 - Shape Modeling International - June 24-26, 2015

TOPOLOGICALLY-CONSISTENT
SIMPLIFICATION
OF DISCRETE MORSE COMPLEXES

Federico luricich, Ulderico Fugacci, Leila De Floriani

University of Genova, Italy



MOTIVATION

Morse Theory is a fundamental tool for studying the morphology of a scalar field

defined on a shape




MOTIVATION

Morse Theory is a fundamental tool for studying the morphology of a scalar field

defined on a shape

Working with real data,

» size of the morphological segmentation

# presence of noise

requires a morphological simplification of the dataset



MOTIVATION

Morse Theory is a fundamental tool for studying the morphology of a scalar field

defined on a shape

Working with real data,

» size of the morphological segmentation

# presence of noise

requires a morphological simplification of the dataset



MOTIVATION

Two issues affect morphological simplification:

> Lack of a data structure for Morse complexes combining

# compactness In storage cost

# efficiency for interactive modifications

> Topological inconsistencies between two different simplification methods
Our contribution:
> A new compact and efficient data structure

> A new simplification algorithm ensuring topological consistency
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DISCRETE MORSE THEORY rrorman isse

Discrete Morse theory is a combinatorial
counterpart of Morse theory defined for

cell complexes

Through the analysis of the critical cells of a function defined on a
discretized shape,
> gives a compact homology-equivalent model for a shape

> IS a tool for computing segmentations of shapes
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HSCRELE PICORSE THEORY

Let 2 be simplicial complex endowed with
a function f defined on 1ts vertices

Discrete Morse theory allows to
> extend f to all simplices

> build a gradient vector field V on 2
# each pair (O,T) In Vs an arrow from a k-simplex 0 to a (k+/)-simplex T
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HSCRELE PICORSE THEORY

Unpaired simplices of dimension k are
denoted as critical simplices of index k

A V-path is a collection of pairs of V

(O-I,TI), (O-Z,TZ), Ce (O-r—l,Tr—|>, (O-r,Tr>

such that

# O+ IS a k-simplex face of the (k+/)-simplex T;

% O+ Is different from O;

Fach gradient vector field V built using discrete Morse theory s
free of closed V-paths
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Navigating the V-paths, one can retrieve:

» Descending Morse complex I'p

# generated by collection of the d-cells representing the regions of influence
of the maxima of [ : k-cells of I'p «— critical simplices of index k
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Let 2 be a simplicial complex of dimension d
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Navigating the V-paths, one can retrieve:

» Ascending Morse complex I'a

# generated by collection of the d-cells representing the regions of influence
of the minima of f: (d-k)-cells of I'a «— critical simplices of index k
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Let 2. be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

> Morse-Smale complex I'ivs

# generated by the connected components of the intersection of the cells of
the descending and ascending Morse complexes



OUTLINE

» Representing Morse Complexes
# Gradient-based and Graph-based Representations

# Discrete Morse Incidence Graph (DMIG)



REPRESENTING MORSE COMPLEXES

Two kinds of representation are used for Morse complexes:

> Implicit representation

# Gradient-based

> Explicit representation
# Graph-based

Both the representations require a data structure for encoding the
underlying simplicial complex 2.



REFRESERN NG MIORSE. COMPL EXES,
GRADIENT-BASED REPRESENTATION

Gradient-based representation encodes the arrows
defining the gradient vector field V

Gradient V can be encoded

using an Incidence Graph data structure for 2

» through a Boolean value for each incidence relation between two simplices

or, more compactly, using the |A* data structure for 2

> through a bitvector for each top simplex of 2 [Weiss et al. 201 3]



REERESER NG MEORSE . COPIPL EXES,
GRAPH-BASED REPRESENTATION
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Graph-based representation consists of
» Morse Incidence Graph (MIG): a weighted graph whose
# nodes «— Morse cells

# arcs encodes incidence relations between two Morse cells

> For each node of the MIG, the entire geometrical embedding of the
corresponding Morse cell



REPRESENTING MORSE COMPLEXES

Gradient-based Representation = Graph-based Representation
+ compact data structure + generally faster for updates

— inefficient In updates — high storage cost

VWe propose a new data structure for Morse complexes
, coupling compactness and efficiency




REFRESERN NG MIORSE. COMPL EXES,
DMIG

Combining gradient-based and graph-based representation,
we have defined the Discrete Morse Incidence Graph (DMIG)

DMIG consists of

» Compact gradient encoding
> Morse Incidence Graph (MIG)

> For each node of the MIG, the critical simplex of the corresponding
lolscrcell

# a single simplex instead of the entire geometrical embedding



REPR

DMIG

SSEPCHHING L IRSE C O BXES:

Storage cost of the DMIG with respect to Graph-based and Gradient-based representation
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DMIG results to be

> / to 30 more compact than
the graph-based representation

» always comparable with the
oradient-based representation
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> Simplifying Morse Complexes
# Topological Inconsistencies during the Simplification

# Shared V-path Disambiguation



SIMIPEIFCING MORSE COMPLEXES

Topology-based simplification of scalar
fields 1s a powerful tool for

» Removing insignificant features

> Preserving relevant parts of the data

Simplification algorithms perform elementary simplification operators organized
In a sequence with respect to a chosen priority measure

# Persistence [Edelsbrunner et al. 2002]
# Separatrix persistence [Welinkauf et al. 2009]

# Topological saliency [Doraiswamy et al. 201 3]
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k-cancellation(O,T) removes a pair of critical simplices of iIndex k and k
+ | respectively under the assumption that

P 0 and T are connected by a unique V-path



PP NGO RS E L L IPPELE RS
CANCELLATION OPERATOR

The most common simplification operator /
s called cancellation [Forman, |1998] \

k-cancellation(O,T) removes a pair of critical simplices of iIndex k and k
+ | respectively under the assumption that

P 0 and T are connected by a unique V-path



PP NGO RS E L L IPPELE RS
CANCELLATION OPERATOR

AR AR 1Y \ p
LA \ \ /|

The most common simplification operator /

s called cancellation [Forman, |998]
= /4

k-cancellation(O,T) removes a pair of critical simplices of iIndex k and k
+ | respectively under the assumption that

P 0 and T are connected by a unique V-path



PP NGO RS E L L IPPELE RS
CANCELLATION OPERATOR

The most common simplification operator /
s called cancellation [Forman, |998]

e

k-cancellation(O,T) removes a pair of critical simplices of iIndex k and k
+ | respectively under the assumption that

P 0 and T are connected by a unique V-path



CANCELLATION OPERATOR:
GRADIENT-BASED REPRESENTATION

Fffect of k-cancellation(T,T) on gradient-based representation:

> Reverse the gradient arrows along the unique V-path from T to O
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CANCELEALICIN OEERATOR
GRADIENT-BASED REPRESENTATION

Fffect of k-cancellation(T,T) on gradient-based representation:

> Reverse the gradient arrows along the unique V-path from T to O

% % "
A critical triangle
0) X critical edge
e triangle
o edge
oo edge paired with a triangle
(;'2\~ \Tz O}j T2 e—o edge proper face of a triangle
1-cancellation(o,T)




CANCELLATION OPERATOR:
GRAPH-BASED REPRESENTATION

Effect of k-cancellation(T,T) on graph-based representation:

P Delete nodes O and T and all arcs incident in them

» Redirect arcs connected to 0 and T updating their welights

~ Z A
1Rt
> I
N N ~N
from Gradient to Graph | -cancellation(0,T)
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Up to dimension 2, the gradient-based and graph-based simplifications are equivalent

For complexes of higher dimensions, the two methods can
produce different results [Glnther et al. 20 4]

Inconsistencies occur when k-cancellation(d,T) involves a shared V-path

# V-path in which different V-paths merge and split
& AT N\O

T 0)




SHY LI AINC P IR S EAC CIPGHLE XS
TP OGICAEINCOINSIS FENCIES

s A N
@2‘\ T
ol
\&
O(\c@‘/

\“ N A P

7 A N

N A P

ydedo) 01 JUSIpeID) WO

(10 )uonp|[aoupo- |



ST INCE RGO RS E L LML EX P
REMOVE OPERATOR romceraaon:

k-remove(T,T) Is a k-cancellation(T,T) in which at least one between the number of

> critical k-simplices connected to T

> critical (k+1)-simplices connected to O
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1-remove(o,T)

~N

Analogously to the cancellation operator:
~ If a shared V-path is involved, k-remove(0, T) produces topological inconsistencies
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REMOVE OPERATOR

Starting from a gradient free of shared V-path, remove operator does not
introduce any shared V-path

Prop. Let V be a gradient free of shared of V-path.and V’ the gradient obtained
applying k-cancellation(o,T). Then,

V’ does not contains any shared V-path <> k-cancellation(0,T) is also a k-remove(C,T)
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1-cancellation(o,T) 1-remove(o,1)
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SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex 2
endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

» Navigate the gradient from k- to (k+/)-saddles to
identify shared V-paths




SR HNG S PILIRBESC CHNPE B Xy
SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex 2
endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

» Navigate the gradient from k- to (k+/)-saddles to
identify shared V-paths

> Introduce a pair of dummy critical simplices 0, T|
thanks to the undo of k-cancellation(T,T))




SR HNG S PILIRBESC CHNPE B Xy
SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex 2
endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

> Navigate the gradient from k- to (k+/)-saddlesto | A N
identify shared V-paths S~ A N
A
> Introduce a pair of dummy critical simplices 0, T|
thanks to the undo of k-cancellation(0,T1)
=
> Perform a simplification step to remove all the N A
dummy critical simplices by using remove operator N &
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SIMPLIFICATION ALGORITHM

We have developed and implemented for unstructured tetrahedral meshes a
topologically-consistent simplification algorithm consisting of

» Preprocessing step: shared V-path disambiguation algorithm

> Simplification algorithm based on remove operator

# remove operators are applied in ascending order of persistence

Data structure for representing Morse complexes:
Discrete Morse Incidence Graph (DMIG)




SIMPLIFICATION ALGORITHM:
EXPERIMENTAL RESULTS

Orriginal scalar field Shared V-paths Original DMIG Simplified DMIG
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Evaluation of the preprocessing step and of the remove-based simplification

Dataset Size 120 23] #C

Timings: BUCKY 323 32K 0.17M 2K
. FUEL 64° 13K 0.06M 2.7K

> Preprocessing: from 0.65 s up to 24.1 min || SiLicium 08x34x34 66K 036M 2.1K
NEGHIP 64> 0.12M 0.64M 12.6K

> Simplification: from 4.13 s up to 24.3 min SHOCKWAVE | 64x64x512 1.2M ™ 1.1IK
BLUNT 256x128x64 1.0M 6M 11.2K
HYDROGEN 1283 0.6M 39M 15.1K

Dummy critical simplices introduced: 2-| 3% of the total number of critical simplices

Maximum amount of memory: from 0.05 to 2.2 GB



CURRENT AND FUTURE WORK

We have developed and implemented a new compact and topologically-consistent
algorithm for a morphological simplification of Morse complexes

The algorithm proposed is a basis tool for

> Simplification algorithm performing both morphological and geometric
operations (through edge contraction) concurrently

# done for the 2D case [Fellegara et al. 2014]

> A topological multi-resolution model

We plan to develop a distributed approach for the simplification algorithm by using
a stellar tree data structure [Fellegara 2015]



