SMI 2015 - Shape Modeling International - June 24-26, 2015 TOPOLOGICALLY-CONSISTENT SIMPLIFICATION OF DISCRETE MORSE COMPLEXES

Federico Iuricich, Ulderico Fugacci, Leila De Floriani

University of Maryland, MD, USA

University of Genova, Italy

Morse Theory is a fundamental tool for studying the morphology of a scalar field defined on a shape

Morse Theory is a fundamental tool for studying the morphology of a scalar field defined on a shape

Working with real data,

- ▶ size of the morphological segmentation
 - presence of noise

requires a morphological simplification of the dataset

Morse Theory is a fundamental tool for studying the morphology of a scalar field defined on a shape

Working with real data,

- ▶ size of the morphological segmentation
 - presence of noise

requires a morphological simplification of the dataset

Two issues affect morphological simplification:

- Lack of a data structure for Morse complexes combining
 - compactness in storage cost
 - efficiency for interactive modifications
- Topological inconsistencies between two different simplification methods

Our contribution:

- A new compact and efficient data structure
- A new simplification algorithm ensuring topological consistency

OUTLINE

Background Notions

- Discrete Morse Theory
- Morse Complexes

Representing Morse Complexes

- Gradient-based and Graph-based Representations
- Discrete Morse Incidence Graph (DMIG)

Simplifying Morse Complexes

- Topological Inconsistencies during the Simplification
- Shared V-path Disambiguation

Simplification Algorithm

- Topologically-Consistent Simplification Algorithm
- Experimental Results

OUTLINE

Background Notions

- Discrete Morse Theory
- Morse Complexes

Representing Morse Complexes

- Gradient-based and Graph-based Representations
- Discrete Morse Incidence Graph (DMIG)

Simplifying Morse Complexes

- Topological Inconsistencies during the Simplification
- Shared

Simplification Algorithm

- Topologically-Consistent Simplification Algorithm
- Experimental Results

DISCRETE MORSETHEORY [FORMAN 1998]

Discrete Morse theory is a combinatorial counterpart of Morse theory defined for cell complexes

Through the analysis of the critical cells of a function defined on a discretized shape,

- gives a compact homology-equivalent model for a shape
- ▶ is a tool for computing segmentations of shapes

Let Σ be simplicial complex endowed with a function f defined on its vertices

Let Σ be simplicial complex endowed with a function f defined on its vertices

Discrete Morse theory allows to
extend f to all simplices

Let Σ be simplicial complex endowed with a function f defined on its vertices

Discrete Morse theory allows to

- extend f to all simplices
- build a gradient vector field V on Σ
 - each pair (σ , τ) in V is an arrow from a k-simplex σ to a (k+1)-simplex τ

Unpaired simplices of dimension k are denoted as **critical** simplices of index k

Unpaired simplices of dimension k are denoted as **critical** simplices of index k

A V-path is a collection of pairs of V

 $(\sigma_1, \tau_1), (\sigma_2, \tau_2), \dots, (\sigma_{r-1}, \tau_{r-1}), (\sigma_r, \tau_r)$

such that

- σ_{i+1} is a k-simplex face of the (k+1)-simplex τ_i
- σ_{i+1} is different from σ_i

Each gradient vector field V built using discrete Morse theory is free of closed V-paths

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

- **Ascending** Morse complex Γ_A

- Morse-Smale complex Γ_{MS}
 - generated by the connected components of the intersection of the cells of the descending and ascending Morse complexes

OUTLINE

Background Notions

- Discrete Morse Theory
- Morse Complexes

Representing Morse Complexes

- Gradient-based and Graph-based Representations
- Discrete Morse Incidence Graph (DMIG)

Simplifying Morse Complexes

- Topological Inconsistencies during the Simplification
- Shared

Simplification Algorithm

- Topologically-Consistent Simplification Algorithm
- Experimental Results

REPRESENTING MORSE COMPLEXES

Two kinds of representation are used for Morse complexes:

- Implicit representation
 - Gradient-based
- Explicit representation
 - Graph-based

Both the representations require a data structure for encoding the underlying simplicial complex Σ

REPRESENTING MORSE COMPLEXES: GRADIENT-BASED REPRESENTATION

Gradient-based representation encodes the arrows defining the gradient vector field V

Gradient V can be encoded

using an Incidence Graph data structure for $\boldsymbol{\Sigma}$

through a Boolean value for each incidence relation between two simplices

or, more compactly, using the IA* data structure for $\boldsymbol{\Sigma}$

• through a **bitvector** for each top simplex of Σ [Weiss et al. 2013]

REPRESENTING MORSE COMPLEXES: GRAPH-BASED REPRESENTATION

Graph-based representation consists of

- Morse Incidence Graph (MIG): a weighted graph whose
 - m nodes \longleftrightarrow Morse cells
 - arcs encodes incidence relations between two Morse cells
- For each node of the MIG, the entire geometrical embedding of the corresponding Morse cell

REPRESENTING MORSE COMPLEXES

Gradient-based Representation

- + compact data structure
- inefficient in updates

Graph-based Representation

- + generally faster for updates
- high storage cost

We propose a new data structure for Morse complexes coupling compactness and efficiency

REPRESENTING MORSE COMPLEXES: DMIG

Combining gradient-based and graph-based representation, we have defined the **Discrete Morse Incidence Graph (DMIG)**

DMIG consists of

- Compact gradient encoding
- Morse Incidence Graph (MIG)
- For each node of the MIG, the critical simplex of the corresponding Morse cell
 - * a single simplex instead of the entire geometrical embedding

REPRESENTING MORSE COMPLEXES: DMIG

Storage cost of the DMIG with respect to Graph-based and Gradient-based representation

OUTLINE

Background Notions

- Discrete Morse Theory
- Morse Complexes

Representing Morse Complexes

- Gradient-based and Graph-based Representations
- Discrete Morse Incidence Graph (DMIG)

Simplifying Morse Complexes

- Topological Inconsistencies during the Simplification
- Shared V-path Disambiguation
- Simplification Algorithm
 - Topologically-Consistent Simplification Algorithm
 - Experimental Results

SIMPLIFYING MORSE COMPLEXES

Topology-based simplification of scalar fields is a powerful tool for

- Removing insignificant features
- Preserving relevant parts of the data

Simplification algorithms perform elementary simplification operators organized in a sequence with respect to a chosen priority measure

- Persistence [Edelsbrunner et al. 2002]
- Separatrix persistence [Weinkauf et al. 2009]
- Topological saliency [Doraiswamy et al. 2013]

SIMPLIFYING MORSE COMPLEXES

Topology-based simplification of scalar fields is a powerful tool for

- Removing insignificant features
- Preserving relevant parts of the data

Simplification algorithms perform elementary simplification operators organized in a sequence with respect to a chosen priority measure

- Persistence [Edelsbrunner et al. 2002]
- Separatrix persistence [Weinkauf et al. 2009]
- Topological saliency [Doraiswamy et al. 2013]

The most common simplification operator is called **cancellation** [Forman, 1998]

k-cancellation(σ , τ) removes a pair of critical simplices of index *k* and *k* + *l* respectively under the assumption that

The most common simplification operator is called **cancellation** [Forman, 1998]

k-cancellation(σ , τ) removes a pair of critical simplices of index k and k + l respectively under the assumption that

The most common simplification operator is called **cancellation** [Forman, 1998]

k-cancellation(σ , τ) removes a pair of critical simplices of index k and k + l respectively under the assumption that

The most common simplification operator is called **cancellation** [Forman, 1998]

k-cancellation(\sigma, \tau) removes a pair of critical simplices of index k and k + 1 respectively under the assumption that

CANCELLATION OPERATOR: GRADIENT-BASED REPRESENTATION

Effect of *k*-cancellation(σ , τ) on gradient-based representation:

 \blacktriangleright Reverse the gradient arrows along the unique V-path from τ to σ

CANCELLATION OPERATOR: GRADIENT-BASED REPRESENTATION

Effect of *k*-cancellation(σ , τ) on gradient-based representation:

 \blacktriangleright Reverse the gradient arrows along the unique V-path from τ to σ

CANCELLATION OPERATOR: GRAPH-BASED REPRESENTATION

Effect of *k*-cancellation(σ , τ) on graph-based representation:

- **Delete** nodes σ and τ and all arcs incident in them
- Redirect arcs connected to σ and τ updating their weights

SIMPLIFYING MORSE COMPLEXES: TOPOLOGICAL INCONSISTENCIES

Up to dimension 2, the gradient-based and graph-based simplifications are equivalent

For complexes of higher dimensions, the two methods can produce different results [Günther et al. 2014]

Inconsistencies occur when k-cancellation(σ , τ) involves a shared V-path

V-path in which different V-paths merge and split

SIMPLIFYING MORSE COMPLEXES: TOPOLOGICAL INCONSISTENCIES

SIMPLIFYING MORSE COMPLEXES: REMOVE OPERATOR [čomić et al. 2011]

k-remove(σ , τ) is a k-cancellation(σ , τ) in which at least one between the number of

- critical k-simplices connected to \mathbf{T}
- critical (k+1)-simplices connected to σ

is less or equal ≤ 2

Analogously to the cancellation operator: If a shared V-path is involved, k-remove(σ , τ) produces topological inconsistencies

SIMPLIFYING MORSE COMPLEXES: REMOVE OPERATOR

Starting from a gradient free of shared V-path, remove operator does not introduce any shared V-path

Prop. Let V be a gradient free of shared of V-path. and V' the gradient obtained applying k-cancellation(σ , τ). Then,

V' does not contains any shared V-path $\iff k$ -cancellation(σ, τ) is also a k-remove(σ, τ)

SIMPLIFYING MORSE COMPLEXES: SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex $\boldsymbol{\Sigma}$ endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

Navigate the gradient from k- to (k+1)-saddles to identify shared V-paths

SIMPLIFYING MORSE COMPLEXES: SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex $\boldsymbol{\Sigma}$ endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

- Navigate the gradient from k- to (k+1)-saddles to identify shared V-paths
- Introduce a pair of dummy critical simplices σ_1, τ_1 thanks to the undo of *k*-cancellation(σ_1, τ_1)

SIMPLIFYING MORSE COMPLEXES: SHARED V-PATH DISAMBIGUATION

We propose a preprocessing step to untie the shared V-paths in a simplicial complex $\boldsymbol{\Sigma}$ endowed with a gradient V

The steps of the shared V-path disambiguation algorithm are the following:

- Navigate the gradient from k- to (k+1)-saddles to identify shared V-paths
- Introduce a pair of dummy critical simplices σ_1, τ_1 thanks to the undo of *k*-cancellation(σ_1, τ_1)

Perform a simplification step to remove all the dummy critical simplices by using remove operator

OUTLINE

Background Notions

- Discrete Morse Theory
- Morse Complexes

Representing Morse Complexes

- Gradient-based and Graph-based Representations
- Discrete Morse Incidence Graph (DMIG)

Simplifying Morse Complexes

- Topological Inconsistencies during the Simplification
- Shared

Simplification Algorithm

- Topologically-Consistent Simplification Algorithm
- Experimental Results

SIMPLIFICATION ALGORITHM

We have developed and implemented for unstructured tetrahedral meshes a topologically-consistent simplification algorithm consisting of

- Preprocessing step: shared V-path disambiguation algorithm
- Simplification algorithm based on remove operator
 - remove operators are applied in ascending order of persistence

Data structure for representing Morse complexes: Discrete Morse Incidence Graph (DMIG)

SIMPLIFICATION ALGORITHM: EXPERIMENTAL RESULTS

SIMPLIFICATION ALGORITHM: EXPERIMENTAL RESULTS

SIMPLIFICATION ALGORITHM: EXPERIMENTAL RESULTS

Evaluation of the preprocessing step and of the remove-based simplification

Dataset	Size	$ \Sigma_0 $	$ \Sigma_3 $	#C
BUCKY	32 ³	32K	0.17M	2K
FUEL	64 ³	1 3K	0.06M	2.7K
SILICIUM	98 <i>x</i> 34 <i>x</i> 34	66K	0.36M	2.1K
NEGHIP	64 ³	0.12M	0.64M	12.6K
SHOCKWAVE	64 <i>x</i> 64 <i>x</i> 512	1.2M	7M	1.1 K
BLUNT	256 <i>x</i> 128 <i>x</i> 64	1.0M	6M	11.2K
Hydrogen	128 ³	0.6M	3.9M	15.1K
	Dataset BUCKY FUEL SILICIUM NEGHIP SHOCKWAVE BLUNT HYDROGEN	Dataset Size BUCKY 32 ³ FUEL 64 ³ SILICIUM 98x34x34 NEGHIP 64 ³ SHOCKWAVE 64x64x512 BLUNT 256x128x64 HYDROGEN 128 ³	DatasetSize $ \Sigma_0 $ BUCKY 32^3 $32K$ FUEL 64^3 $13K$ SILICIUM $98x34x34$ $66K$ NEGHIP 64^3 $0.12M$ SHOCKWAVE $64x64x512$ $1.2M$ BLUNT $256x128x64$ $1.0M$ HYDROGEN 128^3 $0.6M$	DatasetSize $ \Sigma_0 $ $ \Sigma_3 $ BUCKY 32^3 $32K$ $0.17M$ FUEL 64^3 $13K$ $0.06M$ SILICIUM $98x34x34$ $66K$ $0.36M$ NEGHIP 64^3 $0.12M$ $0.64M$ SHOCKWAVE $64x64x512$ $1.2M$ $7M$ BLUNT $256x128x64$ $1.0M$ $6M$ HYDROGEN 128^3 $0.6M$ $3.9M$

Dummy critical simplices introduced: 2-13% of the total number of critical simplices

Maximum amount of memory: from 0.05 to 2.2 GB

CURRENT AND FUTURE WORK

We have developed and implemented a new compact and topologically-consistent algorithm for a morphological simplification of Morse complexes

The algorithm proposed is a basis tool for

Simplification algorithm performing both morphological and geometric operations (through edge contraction) concurrently

Idone for the 2D case [Fellegara et al. 2014]

A topological multi-resolution model

We plan to develop a **distributed approach** for the simplification algorithm by using a **stellar tree** data structure [Fellegara 2015]