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Two issues affect morphological simplification:

Lack of a data structure for Morse complexes combining 

compactness in storage cost

efficiency for interactive modifications

Topological inconsistencies between two different simplification methods

Our contribution:

A new compact and efficient data structure 

A new simplification algorithm ensuring topological consistency 
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DISCRETE MORSE THEORY  [FORMAN 1998]

Through the analysis of the critical cells of a function defined on a 
discretized shape,

gives a compact homology-equivalent model for a shape
is a tool for computing segmentations of shapes

Discrete Morse theory is a combinatorial 
counterpart of Morse theory defined for 
cell complexes
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DISCRETE MORSE THEORY

Discrete Morse theory allows to
extend f to all simplices
build a gradient vector field V on Ʃ

each pair (σ,τ) in V is an arrow from a k-simplex σ to a (k+1)-simplex τ

Let Ʃ be simplicial complex endowed with 
a function f defined on its vertices

σ

τ
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DISCRETE MORSE THEORY

A V-path is a collection of pairs of V

(σ1,τ1), (σ2,τ2), … , (σr-1,τr-1), (σr,τr)

such that 
σi+1 is a k-simplex face of the (k+1)-simplex τi

σi+1 is different from σi

σ1

τ1

σ2

τ2

Each gradient vector field V built using discrete Morse theory is 
free of closed V-paths
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Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

Ascending Morse complex 𝚪A

generated by collection of the d-cells representing the regions of influence 
of the minima of f : (d-k)-cells of 𝚪A ⟷ critical simplices of index k

MORSE COMPLEXES



Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

Morse-Smale complex 𝚪MS

generated by the connected components of the intersection of the cells of 
the descending and ascending Morse complexes

MORSE COMPLEXES
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Two kinds of representation are used for Morse complexes:

Implicit representation 
Gradient-based

Explicit representation
Graph-based

Both the representations require a data structure for encoding the 
underlying simplicial complex Ʃ

REPRESENTING MORSE COMPLEXES



Gradient V can be encoded 

using an Incidence Graph data structure for Ʃ
through a Boolean value for each incidence relation between two simplices

or, more compactly, using the IA* data structure for Ʃ
through a bitvector for each top simplex of Ʃ [Weiss et al. 2013]

REPRESENTING MORSE COMPLEXES: 
GRADIENT-BASED REPRESENTATION

Gradient-based representation encodes the arrows 
defining the gradient vector field V



Graph-based representation consists of 
Morse Incidence Graph (MIG): a weighted graph whose

nodes ⟷ Morse cells 
arcs encodes incidence relations between two Morse cells

For each node of the MIG, the entire geometrical embedding of the 
corresponding Morse cell

REPRESENTING MORSE COMPLEXES: 
GRAPH-BASED REPRESENTATION



REPRESENTING MORSE COMPLEXES

Gradient-based Representation

+ compact data structure

− inefficient in updates

Graph-based Representation

+ generally faster for updates

− high storage cost

We propose a new data structure for Morse complexes 
coupling compactness and efficiency 



DMIG consists of
Compact gradient encoding
Morse Incidence Graph (MIG)
For each node of the MIG, the critical simplex of the corresponding 
Morse cell

a single simplex instead of the entire geometrical embedding

REPRESENTING MORSE COMPLEXES: 
DMIG
Combining gradient-based and graph-based representation,
we have defined the Discrete Morse Incidence Graph (DMIG)



REPRESENTING MORSE COMPLEXES: 
DMIG
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DMIG results to be

7 to 30 more compact than 
the graph-based representation

always comparable with the 
gradient-based representation

Storage cost of the DMIG with respect to Graph-based and Gradient-based representation
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Simplification algorithms perform elementary simplification operators organized 
in a sequence with respect to a chosen priority measure

 Persistence [Edelsbrunner et al. 2002]

 Separatrix persistence [Weinkauf et al. 2009]

 Topological saliency [Doraiswamy et al. 2013]
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Topology-based simplification of scalar 
fields is a powerful tool for

Removing insignificant features

Preserving relevant parts of the data 
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k-cancellation(σ,τ) removes a pair of critical simplices of index k and k
+1 respectively under the assumption that 

 σ and τ are connected by a unique V-path

SIMPLIFYING MORSE COMPLEXES:
CANCELLATION OPERATOR

The most common simplification operator 
is called cancellation [Forman, 1998]
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Effect of k-cancellation(σ,τ) on gradient-based representation: 

 Reverse the gradient arrows along the unique V-path from τ to σ

σ1

σ2

CANCELLATION OPERATOR: 
GRADIENT-BASED REPRESENTATION 

σ1

σ2

τ1

τ
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Effect of k-cancellation(σ,τ) on gradient-based representation: 

 Reverse the gradient arrows along the unique V-path from τ to σ

σ1

CANCELLATION OPERATOR: 
GRADIENT-BASED REPRESENTATION 

σ2

τ1

τ2

τ1

τ2

στ

σ1

σ2



Effect of k-cancellation(σ,τ) on graph-based representation:

CANCELLATION OPERATOR: 
GRAPH-BASED REPRESENTATION 

Delete nodes σ and τ and all arcs incident in them
Redirect arcs connected to σ and τ updating their weights

1-cancellation(σ,τ)from Gradient to Graph

σ στ τ



SIMPLIFYING MORSE COMPLEXES: 
TOPOLOGICAL INCONSISTENCIES
Up to dimension 2, the gradient-based and graph-based simplifications are equivalent

For complexes of higher dimensions, the two methods can 
produce different results [Günther et al. 2014]

Inconsistencies occur when k-cancellation(σ,τ) involves a shared V-path 

V-path in which different V-paths merge and split

στ
τ1 σ1



SIMPLIFYING MORSE COMPLEXES: 
TOPOLOGICAL INCONSISTENCIES
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SIMPLIFYING MORSE COMPLEXES:
REMOVE OPERATOR [ČOMIĆ ET AL. 2011]

k-remove(σ,τ) is a k-cancellation(σ,τ) in which at least one between the number of 

critical k-simplices connected to τ
critical (k+1)-simplices connected to σ 

is less or equal ≤ 2
τ τ1σ τ1

Analogously to the cancellation operator:
If a shared V-path is involved, k-remove(σ,τ) produces topological inconsistencies



SIMPLIFYING MORSE COMPLEXES:
REMOVE OPERATOR

Prop. Let V be a gradient free of shared of  V-path. and V’ the gradient obtained 
applying k-cancellation(σ,τ). Then,

V’ does not contains any shared V-path ⟺ k-cancellation(σ,τ) is also a k-remove(σ,τ)

Starting from a gradient free of shared V-path, remove operator does not 
introduce any shared V-path 

τ1 τ1

τ2 τ2

τ1 τ1

τ3 τ3

τ τ σσ



SIMPLIFYING MORSE COMPLEXES: 
SHARED V-PATH DISAMBIGUATION
We propose a preprocessing step to untie the shared V-paths in a simplicial complex Ʃ 
endowed with a gradient V 

The steps of the shared V-path disambiguation algorithm are the following:

Navigate the gradient from k- to (k+1)-saddles to 
identify shared V-paths
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SIMPLIFYING MORSE COMPLEXES: 
SHARED V-PATH DISAMBIGUATION
We propose a preprocessing step to untie the shared V-paths in a simplicial complex Ʃ 
endowed with a gradient V 

Perform a simplification step to remove all the 
dummy critical simplices by using remove operator

The steps of the shared V-path disambiguation algorithm are the following:

Navigate the gradient from k- to (k+1)-saddles to 
identify shared V-paths

Introduce a pair of dummy critical simplices σ1,τ1 
thanks to the undo of k-cancellation(σ1,τ1)
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SIMPLIFICATION ALGORITHM

We have developed and implemented for unstructured tetrahedral meshes a 
topologically-consistent simplification algorithm consisting of  

Preprocessing step: shared V-path disambiguation algorithm

Simplification algorithm based on remove operator
remove operators are applied in ascending order of persistence

Data structure for representing Morse complexes: 
Discrete Morse Incidence Graph (DMIG)
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SIMPLIFICATION ALGORITHM: 
EXPERIMENTAL RESULTS
Evaluation of the preprocessing step and of the remove-based simplification

Dummy critical simplices introduced: 2-13% of the total number of critical simplices

Maximum amount of memory: from 0.05 to 2.2 GB

Timings:

Preprocessing: from 0.65 s up to 24.1 min

Simplification: from 4.13 s up to 24.3 min



CURRENT AND FUTURE WORK

We have developed and implemented a new compact and topologically-consistent 
algorithm for a morphological simplification of Morse complexes

The algorithm proposed is a basis tool for

Simplification algorithm performing both morphological and geometric   
operations (through edge contraction) concurrently 

 done for the 2D case [Fellegara et al. 2014]

A topological multi-resolution model

We plan to develop a distributed approach for the simplification algorithm by using 
a stellar tree data structure [Fellegara 2015] 


