
Morse complexes for shape segmentation and 
homological analysis:  

discrete models and algorithms
Leila De Floriani1 Ulderico Fugacci1 Federico Iuricich2 Paola Magillo1

1Department of Computer Science, Bioengineering, Robotics, and Systems Engineering, Univerity of Genova, Genova, Italy
2Department of Computer Science and UMIACS, University of Maryland, College Park (MD), USA



Morse complexes for shape segmentation and 
homological analysis

Computational topology and shape analysis
• Adapt methods of differential topology and of algebraic topology 

to various applied problems in scientific and engineering fields, 
e.g. molecular biology, sensor networks, scientific visualization, robotics

• Topology is the basis for structural shape descriptors (e.g, Reeb 
graphs, contour trees, Morse complexes, Betti numbers)

• Topological methods act as a geometric/combinatorial approach 
to shape understanding and recognition
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Introduction
• Morse theory 
• topological tool for efficiently analyzing a shape by studying the behavior of a 

smooth scalar function f defined on it

• Morse complexes
• topological shape descriptors through the critical points of function f 

• Discrete Morse theory [Forman, 1960]: 
• discrete counterpart of Morse theory defined on cell complexes
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Discrete shapes
• Triangle meshes: 

• closed triangulated surfaces or irregularly sampled terrains 

• Regular square grids: 
• regularly sampled terrains

• Tetrahedral meshes:
•  irregularly sampled volume data 

• Regular cubic grids: 
• regularly sampled volume data 

• A scalar value is associated with the vertices of the mesh or 
grid
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Applications: shape segmentation

Image from [Natarajan V. et al., 2006] 
Study of cavities and protrusions in an atomic density 
function defined on a triangulated surface

• Segmenting the boundary of 
a 3D shape
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Applications: shape segmentation

Image from [Dong S. et al., 2006] quad mesh generation 
from a triangle mesh by considering the eigenfunctions of 
the discrete Laplacian operator

• Segmenting the boundary of 
a 3D shape
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Applications: shape segmentation

• Segmenting the boundary of 
a 3D shape
• Volume data segmentation

Image from [Bremer P-T. et al., 2010] burning cells tracked 
over time –  Morse complexes at different time steps    
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Applications: shape segmentation

• Segmenting the boundary of 
a 3D shape
• Volume data segmentation
• Multi-resolution terrain 

analysis
Image from [Bremer et al., 2004] network of the critical 
points at two levels of resolution: 10% of the critical 
points in the picture on the right
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Applications: shape segmentation

• Segmenting the boundary of 
a 3D shape
• Volume data segmentation
• Multi-resolution terrain 

analysis
• Multi-resolution analysis of 

volume data
Image from [Gyulassy et al., 2010] network of the 
critical points on a volume  data set at different 
resolutions
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Applications: homology computation

• Homology computation
• detection of holes in shapes

• 3D and higher-dimensional 
shapes

• Shapes discretized as 
simplicial complexes 
(generalization of triangle and 
tetrahedral meshes)

Image from  
[Dey. et al., 2008]

Image from [Ghrist, 2008]



Morse complexes for shape segmentation and 
homological analysis

Outline

Morse theory in the  
smooth case 

Morse theory in the 
discrete case

Morse theory for 
shape segmentation

Morse theory for 
homology computation
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Morse Theory [Milnor J., 1963; Matsumoto Y., 2002]

• Relates the critical points of a smooth 
scalar function defined on a manifold 
shape to the topology of the shape
• Manifold M: the neghborhood of each point 

of M is homeomorphic to the open unit ball in 
Euclidean space

• Analysis of a manifold shape endowed 
with a scalar function requires extracting 
morphological features (e.g., critical points, 
integral lines and surfaces)
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Morse Theory
Let f  be a real-valued C2-function defined on a d-
dimensional manifold M
•Critical point of f:  any point on M in which the gradient 
of f vanishes

•A critical point p  is degenerate if and only if  the 
determinant  the Hessian matrix H of the second 
order derivatives of function f  at p is null

•Function f is a Morse function if and only if all its critical 
points are non-degenerate

Non-degenerate critical 
point

Degenerate critical points 
(monkey saddle and flat saddle)
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Morse Theory
• The critical points of a Morse function defined 

on a compact manifold are isolated

• A d-dimensional Morse function f  has d+1 types 
of critical points
• For d=2 : minima, saddles and maxima
• For d=3: minima, 1-saddles, 2- saddles and maxima

• The index i of a non-degenerate critical point p 
is the number of negative eigenvalues of the 
Hessian of f at p

Examples of non-Morse functions

Critical points 
of a 2D function
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Morse Theory
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Morse Theory
• An integral line of a smooth function f  is a 

maximal path on M  whose tangent vectors 
agree everywhere with the gradient  of f

• Integral lines start and end at the critical 
points of f

Maximum

Saddle

Minimum

Integral line
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Morse Theory
• An integral line of a smooth function f  is a 

maximal path on M  whose tangent vectors 
agree everywhere with the gradient  of f

• Integral lines start and end at the critical 
points of f

• Integral lines that connect critical 
points of consecutive index are 
called separatrix lines

Separatrix line

Maximum

Saddle

Minimum

Integral line
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Descending Morse complexes

• Integral lines that converge toward a 
critical point p of index i form an i-cell 
called the descending (stable) cell of p
• Descending cell of a maximum: 2-cell
• Descending cell of a saddle: 1-cell
• Descending cell of a minimum: 0-cell

• Descending Morse complex: collection of 
the descending cells of all critical points 
of function f
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Ascending Morse complexes

• Integral lines that originate at a critical 
point p of index i form a (d-i)-cell called 
the ascending (unstable) cell of p
• Ascending cell of a maximum:  0-cell
• Ascending cell of saddle:  1-cell
• Ascending cell of minimum:   2-cell

• Ascending Morse complex: collection of 
the ascending cells of all critical points of 
function f
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Morse-Smale complexes
• Function f is a Morse-Smale 

function if its ascending and 
descending Morse cells 
intersect transversally

• Morse-Smale (MS) complex is 
the complex obtained by 
intersecting all the ascending 
and descending cells
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Morse-Smale complexes
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function if its ascending and 
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Morse-Smale complexes
• Function f is a Morse-Smale 

function if its ascending and 
descending Morse cells 
intersect transversally

• Morse-Smale (MS) complex is 
the complex obtained by 
intersecting all the ascending 
and descending cells

MS complex MS 1-skeleton
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Outline

Morse theory in the 
smooth case 

Morse theory in the 
discrete case

Morse theory for 
shape segmentation

Morse theory for 
homology computation
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Morse theory in the discrete case
• Piecewise-linear Morse theory [Banchoff 1967, 

1970; Edelsbrunner et al.,2001, 2003]
• Characterization of the critical points for 

polyhedral surfaces in 2D and 3D 

• Watershed transform [F. Meyer 1994]
• For images and labeled graphs
• Dimension-independent

• Discrete Morse theory [R. Forman 1998, 2002]
• For cell complexes
• Dimension-independent

Morse theory in the 
discrete case

Piecewise-linear 
Morse theory

Watershed
transform

Discrete Morse 
theory

Later…..Morse theory for shape segmentation, and 
multi-resolution analysis
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Morse theory for shape segmentation
Morse theory 

for shape 
segmentation

Computing a Morse 
complex

Boundary-based
approaches

Watershed 
approaches

Simplifying Morse 
complexes

Multiresolution 
analysis

Region growing
approaches
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Characterization of critical points
• Consider a triangulated surface endowed with a function f  defined at its vertices 
• Assumption: any pair of adjacent vertices have different function values
• A critical point p is defined as regular, maximum, minimum or saddle depending of the 

values of f at its vertices

Maximum Minimum Regular Saddle Multiple Saddle
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Characterization of critical points in 3D [Edelsbrunner et al., 2003]

Minimum Maximum Regular

1-saddle 2-saddle

• In 3D: tetrahedral meshes endowed with a function f 
at its vertices
•  A vertex p is classified based on:

• number m of  connected components in the   lower link Lk-

(p) of p
• number n of connected components in the upper link Lk+

(p) of p
 where 
• lower link Lk-(p) of p: vertices z adjacent to p such that  f(z)<f(p)  

plus the edges of the mesh joining them
• upper link Lk+(p) of p: vertices q adjacent to p such that  f(q)>f(p) 

plus the edges of the mesh joining them
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Morse theory for shape segmentation
Morse theory 

for shape 
segmentation

Computing a Morse 
complex

Boundary-based
approaches

Watershed 
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Simplifying Morse 
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Region growing
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Boundary-based algorithms
• Widely used in terrain modeling and analysis

• Triangle (and tetrahedral) meshes: based on piecewise-linear Morse theory for critical 
point detection

• Regular square and cubic grids: based on computing C0 or higher order  interpolating 
functions over the grid

• Output:
•  1-skeleton of the Morse-Smale complex in 2D (vertices and edges)
•  2-skeleton of the Morse-Smale complex in 3D (vertices, edges and 2-cells)
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Boundary based algorithms

• On triangle meshes, separatrix lines are traced
• along edges following the steepest descent/ascent [Takahashi et al., 

1995; [Edelsbrunner et al., 2001]
• along edges and inside triangles [Bremer et al., 2004]

• Just one algorithm for tetrahedral meshes [Edelsbrunner et al., 2003]
• build descending Morse complex and then the ascending cells inside 

it
• computational intensive.

• General approach
• Extraction of critical points
• Computation of descending  and ascending  separatrix lines 

(from saddles to minima and maxima)
• In 3D, also computation of separatrix surfaces
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Boundary-based algorithms

• On regular grids, different interpolants
• C1-differentiable Bernstein-Bezier bi-cubic (for 2D grids) or tri-

cubic (for 3D grids) function [Bajaj et al. 1998]
• Bi-linear C0 function [Schneider and Wood 2004]
• Bi-quadratic function with no overall continuity [Schneider and 

Wood, 2005]
• Drawback: generation of additional critical points
• Separatrix lines computed through numerical integration

• General approach
• Extraction of critical points
• Computation of descending  and ascending  

separatrix lines (from saddles to minima and maxima)
• In 3D, also computation of separatrix surfaces
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Region-growing algorithms

• Adding triangles/tetrahedra [Magillo et al, 
1999; [Danovaro et al, 2003; Dey et al., 2003]
• on triangle/tetrahedral  meshes

• Adding vertices [Gyulassy et. al, 2007]
• on regular cubic grids

• General Approach: 
• Extract seed vertices (minima or 

maxima) 
• Grow regions from seeds by adding 

triangles/tetrahedra/vertices
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Region-growing algorithms

• Critical point detection based on piecewise-linear Morse 
theory 
• Output:

• ascending/ descending 2-cells (3-cells) as collections of triangles 
(tetrahedra)

• cells of the Morse-Smale complex as collections of vertices 
[Gyulassy et. al, 2007]

• General Approach: 
• Extract seed vertices (minima or 

maxima) 
• Grow regions from seeds by adding 

triangles/tetrahedra/vertices
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The watershed transform

• Watershed and Morse theory
• closure of the catchment basins correspond 

to closure of the ascending maximal Morse 
cells

• Topographic distance between two points p     
and q:

• Basic definitions: 
• Catchment basin of p – set of points in M 

closer to p than to any other critical point 
according to the topographic distance 

• Watershed lines – points of M which do not 
belong to any catchment basin

TD (p,q) = inf ||∇f (P(s)) || ds∫
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The watershed transform – discrete definition
• Defined on labeled graph G=(N,A) with a field 

value associated with each node in N
• Regular grids:

• Nodes in N are pixels/voxels
• Arcs in A define the adjacency relation between 

pixels/voxels
• Triangle/tetrahedral meshes:

• Nodes in N are the vertices
• Arcs in A are edges between adjacent vertices

• Discrete topographic distance
T(p,q) = min {cost (γ) | γ path from p to q in G}

4-adjacency

8-adjacency
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homological analysis

The watershed transform – algorithms

• Algorithms based on:
• Topographic distance [Meyer and Beucher 1990, Meyer 1994]

• discrete topographic distance as a path in graph G
• application of Dijkstra’s algorithm

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• Survey [Roerdink and Meijster, 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and 

Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and 

Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and 

Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and 

Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and 

Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Methods based on:
• Topographic distance 

• Image integration [Meyer and Beucher 1990, Meyer 1994]
• Hill climbing [Meyer 1994]

• Simulated Immersion [Vincent and Soille 1991, Soille 2004]
• Rain falling simulation [Mangan and Whitaker 1999, Stoev and Strasser 2000]

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G



Morse complexes for shape segmentation and 
homological analysis

The watershed transform - algorithms

• Dimension-independent
• All algorithms produce comparable results
• For meshes, labeling of the nodes of graph G extended to triangles and 

tetrahedra 
• Output: 
• descending or ascending Morse maximal cells as collections of maximal cells of the input 

simplicial mesh or regular grid

• General approach: 
• Works on  labeled graph G 
• Produces catchment basins as a classification 

of the nodes of G
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Morse theory for shape segmentation
Approach Input Output Algorithm

Boundary-based

Triangle mesh Morse-Smale

Takahashi et al. 1995

Edelsbrunner et al. 2001

Bremer et al. 2004

Tetrahedral mesh Morse-Smale Edelsbrunner et al. 2003

2D/3D grid Morse-Smale Bajaj et al. 1998

2D grid Morse-Smale Schneider and Wood 2004, 2005

Region-based
Triangle mesh Morse

Magillo et al., 1999

Danovaro et al., 2003

Tetrahedral mesh Morse-Smale Gyulassy et al., 2007

Watershed

any Morse (topographic distance) Meyer and Beucher 1990

Grid Morse (topographic distance) Meyer 1994

Any Morse (immersion) Vincent and Soille 1991, Soille 2004

Triangle mesh Morse (rain) Mangan and Whitaker 1999

Grid Morse (rain) Stoev and Strasser 2000
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Morse theory for shape segmentation
Morse theory 

for shape 
segmentation

Computing a Morse 
complex

Boundary-based
approaches

Watershed 
approaches

Simplifying Morse 
complexes

Multiresolution 
analysis

Region growing
approaches
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Morse complexes for shape segmentation and 
homological analysis

Topological Simplification
• Topological simplification is a fundamental tool for eliminating noise 

and irrelevant features in a topological description of a shape

From a noisy 
representation to a 
simplified 
representation 
focusing on relevant 
features
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homological analysis

Topological Simplification

• Simplifications organized in a 
sequence:
• importance value assigned to 

each simplification 
[Edelsbrunner et al., 2002]

• From a sequence we can 
build progressive models
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homological analysis

Simplifying Morse complexes
• Simplification operator defined in Morse theory:  cancellation [Milnor, 1963]

• removes a pair of critical points connected through a unique integral line 

Cancellation of a maximum p and 
a saddle point q

On the 1-
skeleton of the 
Morse-Smale 
complex

On the descending Morse complex



Morse complexes for shape segmentation and 
homological analysis

Simplification in 2D
• Based on:

• Persistence [Edelsbrunner et al, 2002]
• Absolute difference of two critical points 

scalar values [Bremer et al., 2004] [Comic et al., 
2013] [Fellegara et al., 2014]

• Separatrix persistence [Gunther et al. 2009]
• Computed on the separatrix line between two 

critical points

• Topological saliency [Doraiswamy et al., 2013]
• Computed based on the two critical points and the 

critical points in the neighborhood 

Image from [Bremer et al., 2004]

Images from [Fellegara et al., 2014]



Morse complexes for shape segmentation and 
homological analysis

Simplifying Morse complexes in higher dimensions

• In 2D every saddle as a regular connectivity
• Each saddle is connected to at most two maxima and 

two minima

• In 3D: no restriction for connections between 1-
saddles and 2-saddles

• Given a cancellation involving a 1-saddle q and 
2-saddle p 
• let m = separatrix lines of p
• let k = separatrix lines of q
• Cancellation deletes m+k+1 arcs and inserts m*k 

arcs [Čomič and De Floriani, 2011]

Combinatorial 
representation of the 
Morse-Smale complex. 
Each arc represents a 1-
cell of the MS complex 
connecting two critical 
points 

2-saddle

minima

1-saddle
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homological analysis

Simplification operators
• Different simplification strategies based on cancellation have been studied for 

effectively simplifying a Morse-Smale complex [Gyulassy et al., 2011]
• Perform all the maxima-2-saddle and minima-1-saddle firsts
• Postpone cancellations introducing too many cells

• Dimension-independent simplification operators, called remove [Čomič 
and De Floriani, 2011]
• Deletes an i-saddle q  and an (i+1)-saddle p connected to q  only iff exactly one 

(i+1)-saddle p’ is connected to q or exactly one  i-saddle p’ is connected to p
• Can be seen as a special case of cancellation

• Remove operators form minimally complete basis of operators for 
simplifying Morse-Smale complexes



Morse complexes for shape segmentation and 
homological analysis

Simplification in 3D

• All the simplification algorithm 
defined for volumetric data are 
based on persistence [Gyulassy et 
al., 2006] [Comic et al., 2013]

• Using remove operators results 
in 20% more compact  Morse-
Smale complexes in about half 
the time [Comic et al., 2013]

Original 
funcion

Original MS 
1-skeleton

Sim
plified M

S 1-skeleton
Sim

plified M
S 1-skeleton

Original 
funcion

Original MS 
1-skeleton
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homological analysis

Multi-resolution models for Morse complexes
• Generated through a sequence of cancellations (or 

remove) applied to  the original Morse or Morse-Smale 
complex

• Multi-resolution model:
• A collection of refinements reversing the cancellations performed 

in simplification
• A direct dependency relation between pairs of refinements

• Combinatorial representation of a family of Morse or Morse-
Smale complexes

• Multi-resolution models for terrain data [Edelsbrunner et al., 2001; 
Bremer et al., 2005; Danovaro et al., 2007]

• Multi-resolution models for volumetric data [Gyulassy et al., 2012; 
Comic et al., 2012]



Morse complexes for shape segmentation and 
homological analysis

Modifying the scalar function
• Algorithms have been defined for modifying the underlying 

scalar function while modifying the topological representation

• For terrains defined on regular grids
• [Bremer et al., 2004] function modified using Laplacian smoothing after 

each cancellation
• [Weinkauf et al., 2010] function modified at the end of the sequence of 

cancellations to improve performances
• [Allemand et al., 2015] function modified using piecewise-polynomial 

lines and surfaces.

• For volumetric data defined on cubical grids
• [Gunther et al., 2014]

Images from [Gunther et al., 2014]
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Morse complexes for shape segmentation and 
homological analysis

Morse theory in the discrete case
• Piecewise-linear Morse theory [T. Banchoff 1967, 

1970]
• For polyhedral surfaces
• Defined for the 2D case and extended to 3D

• Watershed transform [F. Meyer 1994]
• For cell complexes
• Dimension-independent

• Discrete Morse theory [R. Forman 1998, 2002]
• For cell complexes
• Dimensions-independent

Morse theory in the 
discrete case

Piecewise-linear 
Morse theory

Watershed
transform

Discrete Morse 
theory

Now…..Morse theory for shape segmentation
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Discrete Morse Theory  [Forman 1998]

• Combinatorial counterpart of 
Morse theory 
• Introduced for cell complexes
• Gives a compact homology-

equivalent model for a shape
• Derivative free tool for computing 

segmentations of shapes
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• Combinatorial counterpart of 
Morse theory 
• Introduced for cell complexes
• Gives a compact homology-

equivalent model for a shape
• Derivative free tool for computing 

segmentations of shapes



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory
Let Ʃ be a simplicial complex
•Function F: Ʃ   R, defined on every simplex σ of Ʃ
 
Notions introduced:
•F is a discrete Morse function if for every i-simplex 

•The two conditions are exclusive and induce a pairings on the 
simplexes of Σ.

• A pair (τ, σ) can be viewed as an arrow formed by an head i-simplex σ 
and a tail (i-1)-simplex τ.

AND#{τ ∈ cb(σ ) | F(τ ) ≤ F(σ )} ≤1 #{τ ∈ b(σ ) | F(τ ) ≥ F(σ )} ≤1



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory
Let Ʃ be a simplicial complex
•Function F: Ʃ   R, defined on every simplex σ of Ʃ
 
Notions introduced:
•F is a discrete Morse function if for every i-simplex 

•The two conditions are exclusive and induce a pairings on the 
simplexes of Σ.

• A pair (τ, σ) can be viewed as an arrow formed by an head i-simplex σ 
and a tail (i-1)-simplex τ.

AND#{τ ∈ cb(σ ) | F(τ ) ≤ F(σ )} ≤1 #{τ ∈ b(σ ) | F(τ ) ≥ F(σ )} ≤1



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory
Let Ʃ be a simplicial complex
•Function F: Ʃ   R, defined on every simplex σ of Ʃ
 
Notions introduced:
•F is a discrete Morse function if for every i-simplex 

•The two conditions are exclusive and induce a pairings on the 
simplexes of Σ.

• A pair (τ, σ) can be viewed as an arrow formed by an head i-simplex σ 
and a tail (i-1)-simplex τ.

AND#{τ ∈ cb(σ ) | F(τ ) ≤ F(σ )} ≤1 #{τ ∈ b(σ ) | F(τ ) ≥ F(σ )} ≤1



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory
Let Ʃ be a simplicial complex
•Function F: Ʃ   R, defined on every simplex σ of Ʃ
 
Notions introduced:
•F is a discrete Morse function if for every i-simplex 

•The two conditions are exclusive and induce a pairings on the 
simplexes of Σ.

• A pair (τ, σ) can be viewed as an arrow formed by an head i-simplex σ 
and a tail (i-1)-simplex τ.

AND#{τ ∈ cb(σ ) | F(τ ) ≤ F(σ )} ≤1 #{τ ∈ b(σ ) | F(τ ) ≥ F(σ )} ≤1



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory
Let Ʃ be a simplicial complex
•Function F: Ʃ   R, defined on every simplex σ of Ʃ
 
Notions introduced:
•F is a discrete Morse function if for every i-simplex 

•The two conditions are exclusive and induce a pairings on the 
simplexes of Σ.

• A pair (τ, σ) can be viewed as an arrow formed by an head i-simplex σ 
and a tail (i-1)-simplex τ.

AND#{τ ∈ cb(σ ) | F(τ ) ≤ F(σ )} ≤1 #{τ ∈ b(σ ) | F(τ ) ≥ F(σ )} ≤1



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse theory

• Given a discrete vector field V, a V-path is a sequence 
of pairs of V

α0, β0, α1, β1, α2, … , αr-1, βr-1, αr

α0

β0

α1

β1

• A discrete vector field V on Ʃ is a collection of pairs (τ, σ) 
∊ Ʃ x Ʃ such that τ ≺ σ and each simplex of Ʃ is in at most 
one pair of V
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Discrete Morse theory

• Given a discrete vector field V, a V-path is a sequence 
of pairs of V

α0, β0, α1, β1, α2, … , αr-1, βr-1, αr A discrete vector field V is the 
(Forman) gradient vector field of a 

discrete Morse function if and only if 
there are no non-trivial closed paths

Gradient pair
Boundary simplex

α0

β0

α1

β1

• A discrete vector field V on Ʃ is a collection of pairs (τ, σ) 
∊ Ʃ x Ʃ such that τ ≺ σ and each simplex of Ʃ is in at most 
one pair of V



Morse complexes for shape segmentation and 
homological analysis

Discrete Morse complex

• Navigating the V-paths, discrete 
Morse complexes and separatrix 
lines are retrieved
• For the descending Morse complex
• From critical triangles navigating 

edge-face arrows
• From critical edges navigating edge-

vertex arrows
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Discrete Morse complex

Descending Morse complex
Ascending Morse complexAscending Morse complex

Morse-Smale complex
Images from [Weiss et al., 2013]
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homological analysis

Computing a Forman gradient
• Basics: 

• Starting from the vertices, simulate a Forman 
function while building the discrete gradient 
vector field 

• Navigate the V-paths of the discrete gradient 
vector field starting from the critical 
simplexes 

• Parallelize the computation:
• Working on the link of each vertex [King et al., 2005]
• Divide and conquer approach [Gyulassy et al., 2008]
• Working on the star of each vertex [Robins et al., 2011]

• Minimize the number of critical simplexes [Cazals et al., 2003][Robins et al., 2011]
• Compute accurate geometry of the Morse complexes [Gyulassy et al., 2012]
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Navigating Forman gradient
• Basics: 

• Starting from the vertices, simulate a Forman 
function while building the discrete gradient 
vector field 

• Navigate the V-paths of the discrete gradient 
vector field starting from the critical 
simplexes 

• Boolean function for visiting each simplex only 
once [Gunther et al., 2012][Weiss et al., 2013]

• Avoid the boolean function for minimizing 
memory consumption [Shivashankarar et al., 2012]
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 Simplicial Homology
Homology is a topological invariant

• roughly speaking, it counts and detects the holes of various dimensions in a topological 
space

Homology groups can be computed, as opposed to homotopy groups or homeomorphism 
equivalence classes
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Simplicial homology - chains

• An i-chain c is a linear combination of i-simplices in Σ
• An i-cycle is a closed i-chain

• Non-bounding cycle (e.g. blue or red cycles)
• Bounding cycle (e.g. green cycle)
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Simplicial homology - non-bounding cycles

• Two Non-Bounding cycles can be
• Dependent (the two blue 1-cycles) if they represent the same homology 

class (the same hole)
• Independent (the red and blue 1-cycles) if they represent different 

homology classes
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Simplicial homology - Betti numbers

• Betti numbers count the number of 
independent non-bounding cycles in the object
• i-th Betti number counts the number of i-cycles
• Non-bounding cycles are also called generators

• β0 = 2
• two connected 

components

• β1 = 2
• two independent 1-

cycles

• β2 = 1
• one 2-cycle
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How can we compute homology?
• The classical technique is the Smith Normal Formal algorithm (SNF) 

[Munkres, 1984]

• It is based on the reduction of the boundary matrices of K which encode 
the boundary relationships between all  the simplices of K. 

• The time complexity of the SNF algorithm is super-cubical in the number 
of the simplices of K
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Homology and discrete Morse theory
• Reduction in the complexity of homology 

computation on a simplicial complex Σ
•  by considering  a discrete Morse complex M 

associated with Σ

• Result: Σ and of M have isomorphic homology 
groups

• M has fewer cells than Σ

• Steps:
• Generate a discrete Morse gradient V 

on the simplicial complex
• Compute Morse complex
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Homology and discrete Morse theory
• Reduction in the complexity of homology 

computation on a simplicial complex Σ
•  by considering  a discrete Morse complex M 

associated with Σ

• Result: Σ and of M have isomorphic homology 
groups

• M has fewer cells than Σ

• Steps:
• Generate a discrete Morse gradient V 

on the simplicial complex
• Compute Morse complex

Perfect Morse Matching
β0 = #{ 0-saddles } = 1
β1 = #{ 1-saddles } = 2
β2 = #{ 2-saddles } = 1
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Unconstrained algorithm for homology comptuation
• Unconstrained algorithm: no scalar value

• Dimension dependent
• 2-dimensional cell complexes [Lewiner et al., 2003]

• Approaches based on pairings critical simplex pairs:
• Starting from top simplexes (reduction based algorithms) 

[Benedetti et al., 2014]
• Starting from vertices (coreduction based algorithms) [Harker 

et al., 2010] [Harker et al., 2014]
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Reduction based algorithm [Benedetti et al., 2014] 

• Starting from maximal-simplexes
• α: i-simplex
• β: (i+1)-simplex
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• Starting from vertices
• α: i-simplex
• β: (i+1)-simplex

Coreduction based algorithm [Harker et al., 2010] [Harker et al., 2014]
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Algorithms for computing a Forman gradient
Approach Input Output Algorithm

Constrained

Triangle meshes Forman gradient Cazals et al., 2003

Tetrahedral meshes “ King et al., 2005 

nD cell complex “ Gyulassy et al., 2008

nD cell complex “ Robins et al., 2011

nD cell complex “ Gyulassy et al., 2012

Unconstrained

2D cell complex “ Lewiner et al., 2003

nD cell complex “ Benedetti et al., 2014

nD cell complex “ Harker et al., 2014

nD simplicial “ Fugacci et al., 2014

Gradient Traversal
Forman gradient All MS cells Gunther et al., 2012

Forman gradient All MS cells Shivashankarar et al., 2012

Forman gradient All MS cells Weiss et al., 2013
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Persistent homology [Edelsbrunner et Harer, 2008]

• Defined for overcoming the limitations of 
homology

• First defining a scalar function on an 
object, persistent homology studies the 
changes in the homology of the object at 
the vary of the sublevel sets of the function

Characterize 
the homology 
of two 
different 
shapes
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Persistent Homology (cont’d)
f

• Persistent Homology can be computed defining a scalar function on the vertices of the 
simplicial complex and computing the discrete Morse complex on it with a constrained 
approach.
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approach.
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Persistent Homology (cont’d)
f

• Persistent Homology can be computed defining a scalar function on the vertices of the 
simplicial complex and computing the discrete Morse complex on it with a constrained 
approach.
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Computing persistent homology

•For the 2D and 3D case [Robins et al., 2011] critical cells 
identified are in one-to-one correspondence with the 
topological changes in the sub-level sets of the function

•[Gunther et al.,2012] an efficient implementation has been 
defined for volumetric data

•[Nanda et al., 2013] a general algorithm for nD simplicial 
complexes has been defined.
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Future developments
• Analysis of time dependent vector fields based on Morse theory

• Works done in the 2D case [Reininghaus et al, 2011] [Kasten et al., 2011]
• Semantic problems: identifying which topological structure best represent time 

varying data in 3D
• Efficiency problems: how can we track these structure over time efficiently.

• Big data analysis:
• Understanding the structure of high-dimensional data through homology and persistent 

homology
• Need for new  tools capable of dealing with large data sets in low, medium and high 

dimensions

• Persistence homology for multi-variate functions [Carlson and Zomorodian, 2007] 
[Allili et al., 2015]
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Thank you for your attention  
 

Questions?
Slides can be downloaded from 
http://www.umiacs.umd.edu/~iuricich/ 

All the references and much more can 
be found on our paper 

http://www.umiacs.umd.edu/~iuricich/



