

A Hierarchical Approach to Topological Shape Analysis

Lidija Comic¹

Leila De Floriani²

Federico Iuricich² Ulderico Fugacci²

¹University of Novi Sad, Serbia

²University of Genova, Italy

Motivations

Our interest - applying tools from algebraic topology (homology) to the description and analysis of shapes

- defined by finite sets of points organized to form discrete structures, like cells or simplicial complexes
- here we use cell complexes

Issues both theoretical and computational

- ▶ size of the data sets: often huge collections of unorganized sets of points
- b dimension of the data sets: high-dimensional data

Computational problems in using topological tools

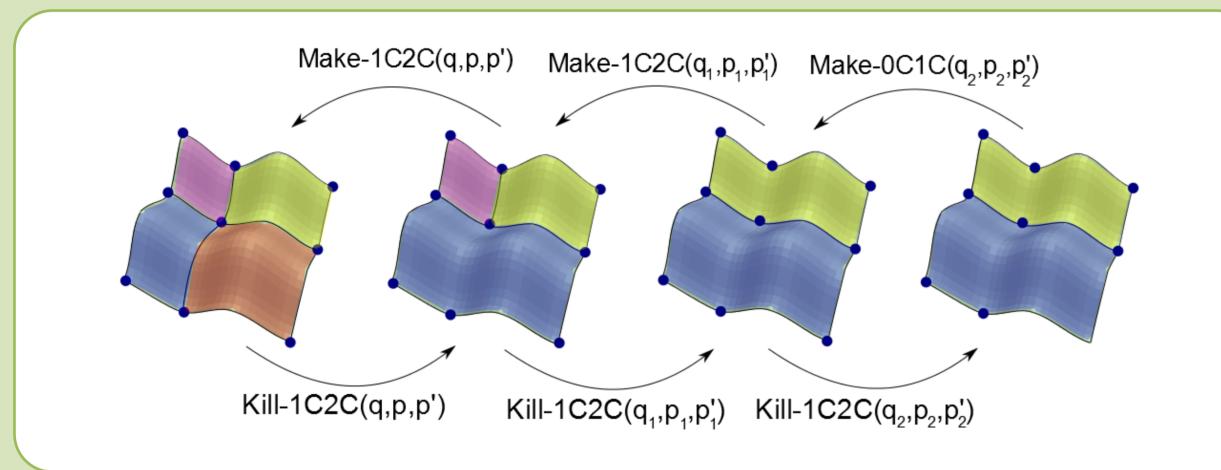
- high computational costs
- high storage costs

Our approach here: use of hierarchical, multi-resolution representations

Hierarchical Cell Complex (HCC)

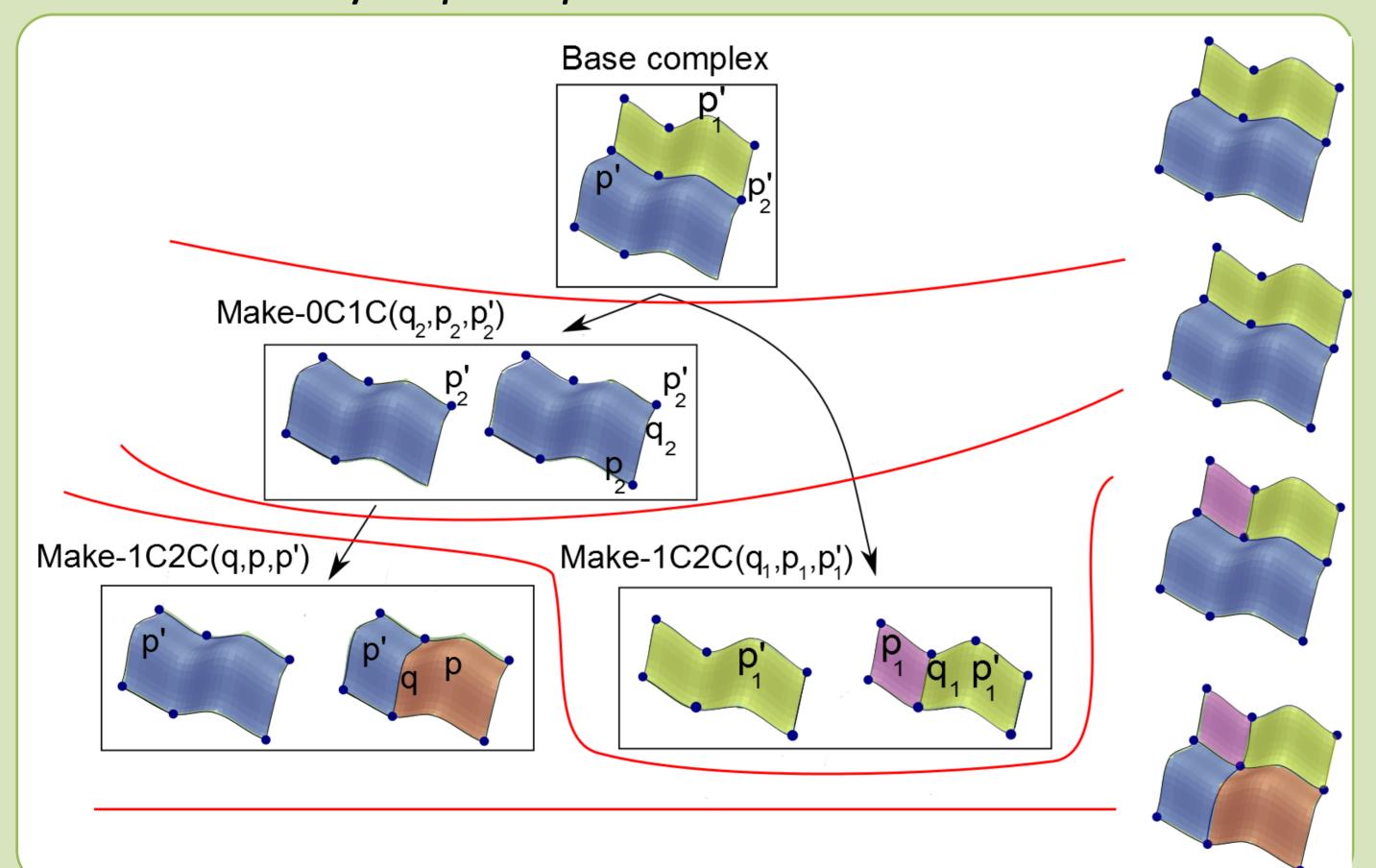
Based on the **simplification** of a given cell complex X by iteratively applying atomic homology-preserving operators (Kill-iCell-(i+1)Cell)

this generates a **sequence** *S* of simplifications



An *HCC* consists of three components (X', M, R):

- **base complex** X' obtained from X by applying the sequence S of simplifications
- > set M of refinements (Make-iCell-(i+1)Cell), inverse of the operators in sequence S
- direct dependency relation R between pairs of refinements, described as a Directed Acyclic Graph (DAG):
 - \blacktriangleright a **refinement** μ =Make-iCell-(i+1)Cell (q,p) directly depends on a refinement μ^* if and only if μ^* creates a cell that will be in the immediate boundary or coboundary of p or q



The transitive closure of the direct dependency relation can be shown to be a partial order

In an HCC (X',M,R), there is a one-to-one correspondence between

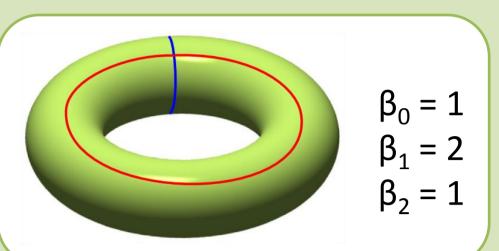
the subsets of refinements in M, which are closed w.r.t. respect to the dependency relation, and the complex which can be extracted from it

Extraction process (selective refinement):

top-down traversal of the DAG with iterative application of *Make-iCell-*(i+1)Cell refinements to the base complex X'

Homology Computation on the HCC

We are interested in computing the **homology groups** $H_i(X; \mathbb{Z}_2)$ of a cell complex X with coefficients in \mathbb{Z}_2



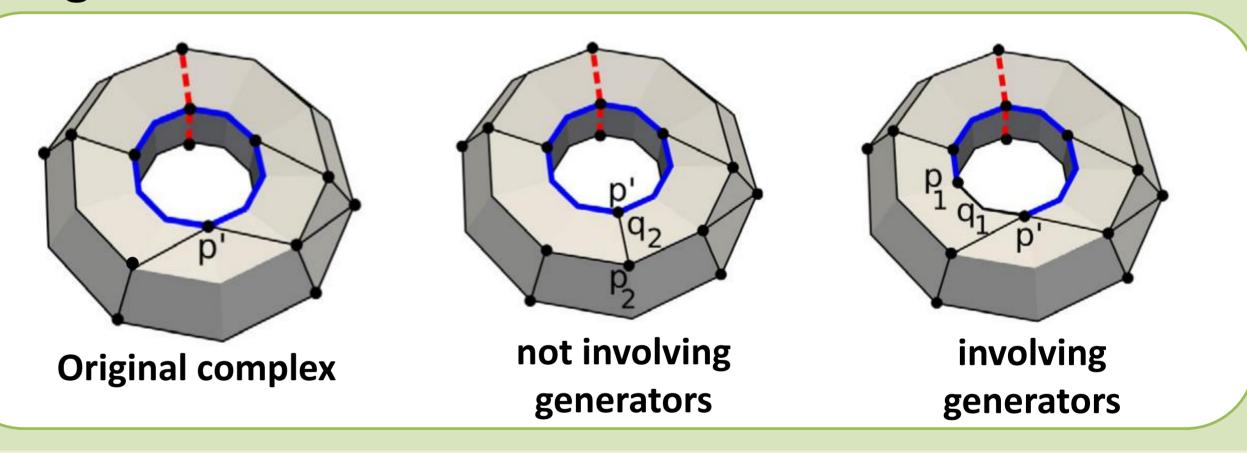
- the Betti numbers $β_i$'s of X
 - \triangleright β_i measures the number of independent nonbounding *i*-cycles in *X* (*i*-holes)
- the homology generators of degree i: generators of the \mathbb{Z}_2 -vector space $H_i(X; \mathbb{Z}_2)$

All complexes, which can be extracted from an HCC(X',M,R), have the same homology of the original complex X

▶ Smith Normal Form (SNF) reduction used to compute homology on the base complex X'.

Computing generators during selective refinement

application of *Make-iCell(i+1)Cell* only affects generators of degree *i+1*



Experimental Evaluation

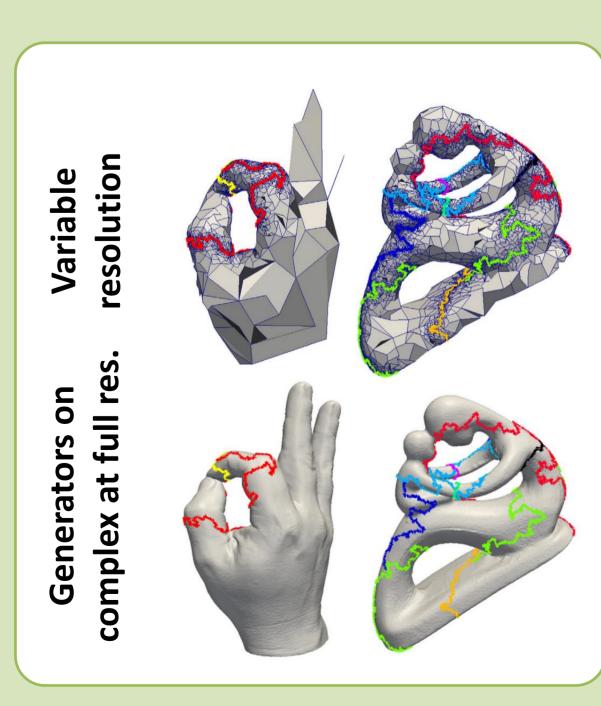
Computation of homology on the base complex plus refining all the generators to full resolution:

- min 0.15 seconds max 83.3 seconds
- on the smallest complex (*Genus3* 40K cells) 2.6 hours for homology computation

Extraction at uniform and variable resolutions:

variable resolution: maximum detail only in the neighborhood of specific homology generators

Dataset	SNF	Tot Ref	Uniform		Generators	
	Time	Time	Ref.	Time	Ref.	Time
Genus3			4K	0.03s		
	9.2×10^{-5} s	0.15s	10K	0.07s	5K	0.03s
			16K	0.12s		
Fertility	_		144K	1.8s		
	8.3×10^{-5} s	9.31s	362K	4.6s	68K	1.48s
			579K	7.52s		
Hand			200K	2.6s		
	9.8×10^{-5} s	14.9s	500K	6.8s	19 K	1.6s
			800K	11.2s		
Buddha			320K	0.5s		
	0.02s	23.7s	800K	4.3s	162K	3.6s
			1.2M	19.2s		
Skull			75K	1.0s		
	0.007s	6.4s	187K	2.9s	191K	2.6s
			299K	5.0s		
Fert-Solid			1.2M	7.5s		
	8.8s	74.5s	3.1M	29.1s	267K	10.9s
			4.9M	69.3s		



Datasets – triangle and tetrahedral complexes (between 40K and 6.2M cells): storage cost between 4.8 and 980 MB.