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MOTIVATION

Apply topological methods to the description and the analysis of shapes

We are interested in:

Large-size data

High-dimensional data

 Main tool:  Simplicial Homology 
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DISCRETE MORSE THEORY 
[FORMAN 1998]

Combinatorial counterpart of Morse theory [Milnor 1963]

Introduced for CW complexes

Gives a compact homology-equivalent model for a shape

Provides topological invariants from a gradient vector field



DISCRETE MORSE FUNCTION

Let Ʃ simplicial complex

f : Ʃ → ℝ is called discrete Morse function if, for every simplex σ,

# { ρ ≻ σ | f(ρ) ≤ f(σ) } ≤ 1

# { τ ≺ σ | f(τ) ≥ f(σ) } ≤ 1



DISCRETE MORSE COMPLEX 

Critical simplices generate a chain complex ℳ* called 

discrete Morse complex

 Proposition.     Hk(ℳ*) ≅ Hk(Ʃ)   

A k-simplex σ is critical with index k if 

# { ρ ≻ σ | f(ρ) ≤ f(σ) } = # { τ ≺ σ | f(τ) ≥ f(σ) } = 0



DISCRETE MORSE FUNCTION AND GRADIENT VECTOR FIELD 

A discrete vector field V on Ʃ is a collection of pairs of simplices (τ, σ) ∊ Ʃ x Ʃ 

such that τ ≺ σ and each simplex of Ʃ is in at most one pair of V

A discrete Morse function f : Ʃ → ℝ induces a discrete vector field on Ʃ  

V = { (τ, σ) Ʃ x Ʃ | τ ≺ σ and f(τ) ≥ f(σ) } 

called the gradient vector field of f



DISCRETE MORSE FUNCTION AND GRADIENT VECTOR FIELD 

Given a discrete vector field V, a gradient path is a sequence of simplices of Ʃ

α0, β0, α1, β1, α2, … , αr-1, βr-1, αr

where (αi, βi)∊V, αi+1≺ βi and αi≠ αi+1

A gradient path is a non-trivial closed path if r≥0 and α0=αr

Theorem.  A discrete vector field V is the gradient vector field of a discrete 
Morse function if and only if there are no non-trivial closed paths



REDUCTIONS AND COREDUCTIONS 
[MROZEK ET AL. 2009]

Let (τ, σ) be a pair of Ʃ such that < ∂σ, τ >=±1

 (τ, σ) is a reduction pair if
cbdƩτ = {σ}

 (τ, σ) is a coreduction pair if
bdƩ σ = {τ}

 Proposition.  The removal of a reduction or of a coreduction pair is a 
homology-preserving operator



GRADIENT VECTOR FIELD BY REDUCTIONS 
[BENEDETTI ET AL. 2009]

Input: Ʃ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set  Ʃ’ ← Ʃ,  V ← ∅, A ← ∅

while Ʃ’ ≠ ∅ do

while Ʃ’ admits a reduction pair (τ, σ) do
V ← V ∪ { (τ, σ) }
Ʃ’ ← Ʃ’ \ { τ, σ }

end while

Let η be a top simplex in Ʃ’ 
 A ← A ∪ { η }
Ʃ’ ← Ʃ’ \ { η }

end while
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REDUCTION-BASED AND 
COREDUCTION-BASED APPROACHES 

The same holds even if the following condition is not satisfied

(    ) A new critical simplex is created only if no more [co]reduction
       pair is available 

 Proposition. 
Both the algorithms produce a gradient vector field on Ʃ 



EQUIVALENCE OF REDUCTION-BASED 
AND COREDUCTION-BASED APPROACH 

Which approach is able to compute a gradient vector field with less 
critical simplices?

Reduction-based and coreduction-based approaches are equivalent

 Proposition. Given a simplicial complex Ʃ and the gradient vector field V 
produced by a reduction-based algorithm, it is always possible to obtain the 
same gradient vector field with a coreduction-based algorithm
The reverse is also true



EQUIVALENCE OF REDUCTION-BASED 
AND COREDUCTION-BASED APPROACH 

Proof’s guidelines:

Consider a simplicial complex Ʃ and run the reduction-based approach on it
Take the sequence of reduction pairs and top simplex removals operated by 
the algorithm
Reverse the order of the sequence: this new sequence represents for Ʃ a 
performable sequence of coreduction pairs and free simplex removals
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EQUIVALENCE OF REDUCTION-BASED 
AND COREDUCTION-BASED APPROACH 

 Remark.  It is not true, in general, that, given a gradient vector field V built 
by using a reduction-based algorithm satisfying condition (    ), V can be 
produced by a coreduction-based algorithm for which (    ) holds



Another class of approaches interleaving reductions and coreductions 
could be proposed

Each interleaved approach has equivalent capabilities

INTERLEAVING REDUCTIONS AND COREDUCTIONS 

 Proposition. Given a simplicial complex Σ, any discrete vector field 
produced by an algorithm performing reduction and coreduction pairs, 
removals of top and of free simplices is a gradient vector field

 Proposition. Given a simplicial complex Σ and the gradient vector field V 
produced by an interleaved algorithm, it is always possible to obtain the 
same gradient vector field with a reduction-based algorithm or, equivalently, 
with a coreduction-based algorithm



OUR ALGORITHM 

We developed a new coreduction-based algorithm for simplicial
homology computation based on a highly efficient data structure
and on a compact encoding of the gradient vector field

Main features:
Compact encoding of the simplicial complex

Computation of a gradient vector field through a coreduction-based approach

Compact encoding of the gradient vector field on the data structure

Extraction of boundary maps

Retrieval of simplicial homology and homology generators



COMPACT ENCODING OF THE 
SIMPLICIAL COMPLEX 
A simplicial complex Ʃ is encoded by Generalized Indexed data structure 

with Adjacencies (IA*) [Canino et al. 2011]

The IA* data structure is generally more compact than IG: 
 about 46% in dimension 2
 about 70% in dimension 3
 up to 170 times for special cases in dimension 8

Incidence Graph (IG) encodes:
all the simplices of Ʃ
(immediate) boundary and 
coboundary for each simplex 

IA* encodes:
top simplices and vertices of Ʃ
partial (co)boundary and adjacency 
relations for each encoded simplex 



COMPACT ENCODING OF THE 
GRADIENT VECTOR FIELD 

Encoding of the gradient vector field is associated only with the top simplices

Each top k-simplex σ encodes a bitvector of length                      

representing all the possible pairings on its boundary.

For efficiency, an additional bitvector, denoted as paired(σ), is encoded for each 
top simplex:
paired(σ) encodes, for each simplex τ in the boundary of σ, whether τ is paired
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COMPACT ENCODING OF THE 
GRADIENT VECTOR FIELD 

Let  η, τ be two paired simplices both in σ of dimension j and j+1 respectively;
the resulting pair will be encoded in the following position of the bitvector of σ
 

start + (j+2) posτ + posη

where 
 start  = 
 posτ  is the position of τ on the boundary of σ
 posη  is the position of η on the boundary of τ
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EXPERIMENTAL EVALUATION 

Column d indicates the complex dimension, n indicates the total number of simplexes, 
n0 the number of vertices and ntop the number of top simplices



EXPERIMENTAL EVALUATION 

We compared our performances with Perseus [Nanda 2012]

IA* vs IG: storage cost

Ratio (IG/IA*) of the storage costs of IG and IA* data structures
endowed with gradient vector field encoding



EXPERIMENTAL EVALUATION 

IA* vs IG: timings

Comparisons of timings for the homology computation algorithms
based on the IA* and IG data structures



CONCLUSIONS 

We have
 proven the equivalence of different methods based on homology-
preserving operators to compute a gradient vector field
 developed a new algorithm based on coreductions, on a space-efficient 
representation of the simplicial complex and on a compact encoding of 
the gradient vector field 

We plan to develop
 an efficient encoding based for a simplicial complex in arbitrary 
dimension on the stellar tree data structure [Weiss et al. 2011] 
 a new algorithm for persistent homology computation


