"Persistent Homology" Summer School - Rabat

Persistent Homology in Complex Network Analysis

Ulderico Fugacci

Kaiserslautern University of Technology Department of Computer Science

July 7, 2017

Anything has Shape

"Data has shape and shape has meaning" Gunnar Carlsson

Anything has Shape

"Data has shape and shape has meaning" Gunnar Carlsson

Persistent Homology:

 From:
 To:
 Neuroscience

 Shape Analysis
 Geography

 Shape Analysis
 Biophysics

 Biophysics
 Biology

 Network Analysis
 Oncology

Anything has Shape

"Data has shape and shape has meaning" Gunnar Carlsson

Persistent Homology:

 From:
 To:
 Neuroscience

 Shape Analysis
 Geography

 Shape Analysis
 Biophysics
 Biology

 Network Analysis
 Oncology
 ...

Definition:

A *network* is a **complex system** consisting of **individuals** or **entities** connected by specific **ties** such as

- Personal Relationship
- Shared Knowledge

References:

M. Newman, *Networks: An Introduction*, 2010 J. Scott, *Social Network Analysis*, 2017

A Bunch of Examples:

Social Networks

- Social Networks
- Sensor Networks

- Social Networks
- Sensor Networks
- Biological Networks

- Social Networks
- Sensor Networks
- Biological Networks
- Collaborative Networks

- Social Networks
- Sensor Networks
- Biological Networks
- Collaborative Networks

Outline

Brief Introduction to Complex Network Analysis

Outline Brief Introduction to Complex Network Analysis Persistence-based Network Analysis

Representation:

Representation:

Representation:

Representation:

Centrality Measures:

Different criteria to underline **different roles**:

Key players Brokers Bridges Isolated

. . .

A function $F: V \longrightarrow R$ assigning to each node a "*centrality*" value:

- Degree centrality
- Betweenness centrality
- Closeness centrality
- Eigenvector centrality
- Erdös distance

Degree Centrality:

Degree Centrality:

Betweenness Centrality:

Closeness Centrality:

Eigenvector Centrality:

x>0 implies λ must be the largest eigenvalue of A and x the corresponding eigenvector

Erdös Distance:

Centrality Measures:

A centrality measure for *any query*

DegreeHow many individuals can v reach directly?BetweennessHow likely is v to be the most direct route between two individuals?ClosenessHow fast can v reach everyone in the network?EigenvectorHow well is v connected to other well-connected individuals?ErdösHow far is v from a specific individual?

Sociocentric Networks:

<u>Structural Metrics</u>:

- Average of a Centrality Measure
- Diameter
- Density
- Transitivity
- • • •

Community Decomposition:

- Atomic Communities
- Clustering Techniques

Structural Metrics:

How far are two individuals at most?

Diameter:

The longest shortest path between any two nodes

Diameter(G) = 2

Structural Metrics:

+ How close is G to being an "everyone knows everyone" network?

Density:

Number of edges of G

Number of all possible edges

Density(G) = 4/6 = 0.67

Structural Metrics:

 How likely are two individuals connected to an individual v to be connected to each other?

Transitivity:

Number of closed triplets of nodes

Number of connected triplets

Transitivity(G) = 1/3 = 0.33

Community Decomposition:

- Atomic Communities:
 - Clique
 - n-Clique
 - n-Clan
 - n-Club
 - *k-Plex*
 - k-Core

• • •

Community Decomposition:

- Atomic Communities:
 - Clique
 - *n*-Clique
 - n-Clan
 - n-Club
 - *k-Plex*
 - k-Core

Clique: maximal subgraph whose nodes are all adjacent to each other

Community Decomposition:

- Atomic Communities:
 - Clique
 - *n*-Clique
 - *n-Clan*
 - *n-Club*
 - *k-Plex*
 - k-Core

n-Clique:

maximal subgraph such that the distance of each pair of its nodes is not greater than *n*

Community Decomposition:

- Atomic Communities:
 - Clique
 - *n*-Clique
 - n-Clan
 - n-Club
 - *k-Plex*
 - k-Core

maximal subgraph in which each node is adjacent to all other nodes of the subgraph except at most *k* of them

Clustering Techniques:

 Agglomerative (bottom-up)
 approach based on
 Centrality Measures

 Divisive (top-dow)
 approach based on
 Atomic Communities

 Quality Functions

Clustering Techniques:

Agglomerative (bottom-up)

Divisive (top-dow)

Girvan-Newman Algorithm:

approach based on <

Centrality Measures

Atomic Communities Quality Functions

Iterated removal of the edge with largest betweenness centrality

Image from [Fortunato 2009]

Clustering Techniques:

Agglomerative (bottom-up)

Divisive (top-dow)

approach based on

Centrality Measures

Atomic Communities

Quality Functions

Clique Percolation:

k-adjacency: two clique of size *k* are *k*-adjacent if they share *k*-1 nodes

k-clique community: maximal union of cliques of size *k* pairwise connected by a sequence of *k*-adjacent cliques

Decomposition in *k*-clique communities

Image from [Palla et al. 2005]

Clustering Techniques:

Agglomerative (bottom-up)

Divisive (top-dow)

approach based on <

Centrality Measures Atomic Communities *Quality Functions*

Modularity-based Algorithm:

Modularity: measure for clustering quality

Iterated aggregation of communities of nodes whose merging *increases modularity*

Image from [Blondel et al. 2008]

Outline Brief Introduction to Complex Network Analysis Persistence-based Network Analysis

Persistence-based Network Analysis

Several Application based on Persistent Homology:

- Sensor Networks [De Silva 2013]
- *Brain* Networks [Lee et al. 2012]
- Collaborative/Co-occurence Networks [Carstens et al. 2013; Rieck et al. 2016]
- *Geolocalized* Networks [Fellegara et al. 2016]

Simplicial Complex Representation:

A network is represented through:

- Simplicial complex *Flag(G)* induced by *G*
 - simplices of $Flag(G) \iff$ cliques of G

Persistence-based Network Analysis

Several Application based on Persistent Homology:

- Sensor Networks [De Silva 2013]
- **Brain** Networks [Lee et al. 2012]
- Collaborative/Co-occurence Networks [Carstens et al. 2013; Rieck et al. 2016]

Flag(G)

• *Geolocalized* Networks [Fellegara et al. 2016]

Simplicial Complex Representation:

A network is represented through:

- Simplicial complex *Flag(G)* induced by *G*
 - simplices of $Flag(G) \iff$ cliques of G

Persistence-based Network Analysis

A Common Pipeline in TDA:

Topological Summaries have proven to be particularly effective to **distinguish shapes** *but*

It's still hard to give a **meaningful interpretation** of what homological cycles represent

Outline Brief Introduction to Complex Network Analysis Persistence-based Network Analysis

Ulderico Fugacci

TU Kaiserslautern, Dept. of Computer Science