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Complex Networks
Definition:

A network is a complex system consisting of 
individuals or entities connected by specific ties such as 

✦ Personal Relationship
✦ Shared Knowledge
✦  …

References:
M. Newman, Networks: An Introduction, 2010
J. Scott, Social Network Analysis, 2017
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Identifying Key Players

Different criteria to underline different roles:

A function F : V ⟶ R assigning to each node a “centrality” value:

✦ Degree centrality
✦ Betweenness centrality
✦ Closeness centrality
✦ Eigenvector centrality
✦ Erdös distance

Key players
Brokers
Bridges
Isolated
 …
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Centrality Measures:



Identifying Key Players
Degree Centrality:
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Given a node v of G=(V, E),

D(v) := #{u 2 V | (u, v) 2 E}
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Degree Centrality:
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Identifying Key Players
Betweenness Centrality:
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Given a node v of G=(V, E),

where:
✦ σst is the number of shortest paths 

from s to t 
✦ σst(v) is the number of those paths 

passing through v

B(v) :=
X

s 6=v 6=t

�st(v)

�st



Identifying Key Players
Closeness Centrality:
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C(v) :=
#V � 1P
u2V d(u, v)

Given a node v of G=(V, E),



Identifying Key Players
Eigenvector Centrality:

Given a node v of G=(V, E),
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xv :=
1

�

X

u2V

Auv xu

Auv :=

(
1 if(u, v) 2 E

0 otherwise

where λ is constant and 

i.e., the vth entry of the eigenvector of

Ax= λx

x>0 implies λ must be the largest eigenvalue of A and x the corresponding eigenvector



Identifying Key Players
Erdös Distance:

∞2

2

∞

∞

1 2

2 2

3
1

0 1

1

u

Given two nodes u, v of G=(V, E),

Eu(v) := d(u, v)

Named after Paul Erdös, 
✦ one of the most prolific 

mathematicians of the 20th century



Identifying Key Players

Degree

Betweenness

Closeness

Eigenvector

Erdös

Centrality Measures:

A centrality measure for any query

How many individuals can v reach directly?

How likely is v to be the most direct route between two individuals?

How fast can v reach everyone in the network?

How well is v connected to other well-connected individuals?

How far is v from a specific individual?



Structural Analysis
Sociocentric Networks:

✦ Structural Metrics:
• Average of a Centrality Measure
• Diameter
• Density
• Transitivity
•  … 

✦ Community Decomposition:
• Atomic Communities
• Clustering Techniques 



Structural Analysis
Structural Metrics:

Diameter: 
The longest shortest path 
between any two nodes

✦ How far are two individuals at most? 

Diameter(G) = 2



Structural Analysis
Structural Metrics:

Density:
Number of edges of G

Number of all possible edges 

✦ How close is G to being an “everyone knows everyone” network? 

Density(G) = 4/6= 0.67



Structural Analysis
Structural Metrics:

Transitivity:
Number of closed triplets of nodes 

Number of connected triplets 

✦ How likely are two individuals connected to an individual v to 
be connected to each other? 

Transitivity(G) = 1/3 = 0.33
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• k-Core
•  … Image from 

[Fortunato 2009]



Structural Analysis
Community Decomposition:

✦ Atomic Communities:
• Clique
• n-Clique
• n-Clan
• n-Club
• k-Plex
• k-Core
•  … 

Clique

Image from 
[Fortunato 2009]

Clique: 
maximal subgraph whose nodes are all adjacent to each other
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Structural Analysis
Community Decomposition:

✦ Atomic Communities:
• Clique
• n-Clique
• n-Clan
• n-Club
• k-Plex
• k-Core
•  … Image from 

[Fortunato 2009]
k-Plex: 

maximal subgraph in which each node is adjacent to all other nodes of the subgraph 
except at most k of them 

1-Plex
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Clustering Techniques:

approach based on
Agglomerative (bottom-up)

Divisive (top-dow)

Centrality Measures
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Quality Functions
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Girvan-Newman Algorithm:

Image from [Fortunato 2009]

Iterated removal of the edge with 
largest betweenness centrality  



Clique Percolation:

Structural Analysis
Clustering Techniques:

approach based on
Agglomerative (bottom-up)

Divisive (top-dow)

Centrality Measures

Atomic Communities

Quality Functions
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Image from [Palla et al. 2005]

Decomposition in k-clique communities k = 4

k-clique community: maximal union of 
cliques of size k pairwise connected by a 
sequence of k-adjacent cliques

k-adjacency: two clique of size k are 
k-adjacent if they share k-1 nodes



Modularity-based Algorithm:

Structural Analysis
Clustering Techniques:

approach based on
Agglomerative (bottom-up)

Divisive (top-dow)

Centrality Measures

Atomic Communities

Quality Functions
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Image from [Blondel et al. 2008]

Modularity: measure for 
clustering quality

Iterated aggregation of 
communities of nodes whose 
merging increases modularity
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Persistence-based Network Analysis
Several Application based on Persistent Homology:

✦ Sensor Networks [De Silva 2013]
✦ Brain Networks [Lee et al. 2012]
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Persistence-based Network Analysis
A Common Pipeline in TDA:

Topological Summaries have proven to be particularly effective to distinguish shapes
but

It's still hard to give a meaningful interpretation of what homological cycles represent

Complex Construction PHk module Distance Computation

≃
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Thank you       

Ulderico Fugacci
TU Kaiserslautern, Dept. of Computer Science


