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Computing Persistent Homology
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E Standard Algorithm: | [Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]
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Computing Persistent Homology
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Compute a reduced boundary matrix for X/
from which easily read the persistence pairs




Computing Persistent Homology

Given a filtered simplicial complex, let us consider its filtering function f:

flo):==min{p | c€X? | R Y
Conversely, P :={oc€ X | f(c)< p} o /
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lﬁ Total Ordering on L/: %’
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| A sequence 01, 0, ..., On Of the simplices of 2 such that:

+ if floi) < floj), then i < j

K + if 0j is a proper face of g, then i <

——



Computing Persistent Homology
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ﬂ A possible choice: g‘ ‘
Set o < o’ if: 04 wvpe
+ if f(o) < f(0’)

+ if f(o) = f(0’) and dim(o) < dim(c’)

+ if f(o) = f(0’) and dim(c) = dim(c’) and ¢ precedes ¢’ with respect to

the lexicographic order of their vertices



Computing Persistent Homology

Boundary Matrix: |
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A square matrix M of size n x n defined by

M e 1 if 05 is a face of o; s.t. dim(o;) = dim(o;) — 1
10 otherwise
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Computing Persistent Homology

‘i Reduced Matrix: }‘

Given a non-null column j of a boundary matrix M,

low(j):==max{il| M;j=0 |

. A matrix R is called reduced if, for each pair of nun-null columns jj, j,

low(j1) = low(j2)

Equivalently, if low function is injective on its domain of definition



Computing Persistent Homology
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Computing Persistent Homology

| Reductlon Algorlthm .

— — ==

e .
/ Matrix R = M

forj=1,...,ndo

while 3 ;"< j with low(j’) = low(j) do
R.column(j) = R.column(j) + R.column(j’)

endwhile

endfor

\\return R
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Time Complexity:

At most 172 column additions




Initialization: |
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Initialize R to M, where

M is the boundary matrix of X/

expressed according with a total ordering of its simplices
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For each j < 12,

S0, increase j by 1

there is no j’ < j such that
low(j’) = low(j)
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Forj=12, low(12)=7
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Forj=12, low(12)=7

So, set

column j’=10 is such that low(j’) = low(j)= 7
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Forj=12, low(12)=7
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For j=12, low(12)=6

So, set

column j’ = 9 is such that low(j’) = low(j)= 6
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For each j =12,

So, increase j by 1

there is no j” < j such that
low(j’)=low(j)=3
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So, increase j by 1

there is no j’ < j such that
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

.
—| =

—_
N}

—_
(OV)

—_
N

—_
(&)

—_
(@)

—
N

—_
oo

—_
Ne)

DO
S

)
—_

DO
N}

)
w

low

13

14

14

15

16

14

22

For j = 19, low(19) = 14
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For j = 19, low(19) = 14
column j’= 18 is such that low(j”) = low(j) = 14
So, set
= +
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So, increase j by 1

there is no j” < j such that
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For j =22, low(22) =14
column j’= 18 is such that low(j”) = low(j) = 14
So, set
= +
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For j =22, low(22)=13
column j’= 17 is such that low(j’) = low(j) = 13
So, set
= +
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Computing Persistent Homology

Retrlevmg Per51stence Palrs v
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'+ Foreachi=0, ..., n,

if there exists j such that low(j)=1i

+ Once every i has been parsed,

K\ if 7 is an unpaired value

—— = = = R e ———

’/ [i, jl corresponds to [f(oi), f(oi)]

k[i, o) corresponds to [f(0i), )




Computing Persistent Homology

Hy L
[1, ) 2}7 1[2]3[4]5]6]7 ei o[10[11[12] 1314151617 [ 18] 192021 [22]23
2 1 1
[2/ OO) 3
[3, 12] . L 1 1 1 1] 1
V4 5 1
6 1 7
[41 8] 7 1 1
[oiiiaat —
6,9 [
7,101 |2 1
14 ]
[13, 17] - 1
[14, 18] 16 -
17 :
[15, 20] E 1
19
[16, 21] 20
21
H; 22 1
[19, ) L2
low 4 16| 7 5) 3 13 | 14 15 | 16 22

[22, 23]



Computing Persistent Homology

Hy - f
| 3.
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Computing Persistent Homology
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I’ Stundurd algomthm to compute (per81stent) homology [Zomorod1an Carlsson 2005]

4
! + Based on a matrix reduction

+ Linear complexity in practical cases

K + Quadratic complexity in the worst case

— = = = _— =

qﬁ Several dlfferent strategles ,|

Direct approaches Distributed approaches
+ Zigzag persistent homology [Milosavljevi¢ et al. '05] + Spectral sequences [Edelsbrunner, Harer 08; Lipsky et
+ Computation with a twist [Chen, Kerber '11] al. "11]
+ Dual algorithm [De Silvia et al. '11] + Constructive Mayer-Vietoris [Boltcheva et al. "11]
+ Output-sensitive algorithmn [Chen, Kerber "13] + Multicore coreductions [Murty et al. "13]
+ Multi-field algorithm [Boissonnat, Maria "14] + Multicore homology [Lewis, Zomorodian "14]
+ Annotation-based methods |Boissonnat et al. "13; + Persistent homology in chunks [Bauer et al. ‘14a]
Dey et al. "14] + Distributed persistent computation [Bauer et al. ‘14b]

Coarsening approaches
+ Topological operators and simplifications [Mrozek, Wanner "10; Dlotko, Wagner "14]
+ Morse-based approaches [Robins et al. ’11; Harker et al. "14; Fugacci et al. "14]



Computing Persistent Homology

Direct approaches:

+ Zigzag persistent homology |Milosavljevic et al. "05]
+ Computation with a twist [Chen, Kerber '11]

+ Dual algorithm [De Silvia et al. "11]

+ Output-sensitive algorithm [Chen, Kerber '13]

+ Multi-field algorithm |Boissonnat, Maria ’14]

+ Annotation-based methods |Boissonnat et al. '13; Dey et al. '14]



Computing Persistent Homology

Distributed approaches:

+ Spectral sequences |Edelsbrunner, Harer '08; Lipsky et al. "11]
+ Constructive Mayer-Vietoris |Boltcheva et al. ’11]

+ Multicore coreductions [Murty et al. "13]

+ Multicore homology |Lewis, Zomorodian "14]
+ Persistent homology in chunks [Bauer et al. ‘14a]

+ Distributed persistent computation [Bauer et al. ‘14b]




Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner "14 ]
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Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner "14 ]

. Acyclic Subcomplexes [Mrozek et al. ‘08]




Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner "14 ]

- Acyclic Subcomplexes [Mrozek et al. ‘08]
« Reductions and Coreductions [Mrozek et al. “10]




Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner "14 ]

- Acyclic Subcomplexes [Mrozek et al. ‘08]
« Reductions and Coreductions [Mrozek et al. “10]
- Edge Contractions [Attali et al. "11]
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Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner "14 ]

- Acyclic Subcomplexes [Mrozek et al. ‘08]
- Reductions and Coreductions [Mrozek et al. “10]
- Edge Contractions [Attali et al. "11]

+ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. "14]
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MOYS€ The()ry |[Milnor 1963, Matsumoto 2002 ]

+ Topological tool for etficiently analyzing
a shape by studying the behavior of a
smooth scalar function f defined on it

+ Relates the critical points of a smooth
scalar function on a shape with their

regions of influence

+ Analysis of scalar fields requires

extracting morphological features (e.g.,
critical points, integral lines and surfaces)



Morse Theory

Non-degenerate
Let f be a real-valued C?-function defined on a critical point

d-dimensional manifold M

+ Critical point of f: any point on M in which
the gradient of f vanishes

+ Critical points can be degenerate or

non-degenerate Degenerate critical points

monkey saddle and flat saddle
» A critical point p is degenerate iff the determinant ( 4 | v )

the Hessian matrix H of the second order derivatives .
of function f is null -

P ——— —

Function f is a Morse function if and only if
all its critical points are non-degenerate

N\




Morse Theory
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Critical points of a Morse function are
isolated

\_

= = ————————————

Examples of non-Morse functions

+ A d-dimensional Morse function f has d+1 types of critical points,
called i-saddles (i is the index of the critical point)
« Ford =2: minima, saddles and maxima

« For d = 3: minima, 1-saddles, 2- saddles and maxima

Critical points
of a 2D function




Morse Theory

Separatrix line Integral line

/

+ An integral line of a smooth function f
is a maximal path which is everywhere
tangent to the gradient vector field of f

+ Integral lines start and end at the
critical points of f

+ Integral lines that connect critical \
points of consecutive index are called / \ Maximum
separatrix lines Minimum G



Morse Theory

+ Integral lines that converge to a critical point p
of index i form an i-cell called the descending
cell of p

- Descending cell of a maximum: 2-cell
» Descending cell of a saddle: 1-cell

+ Descending cell of a minimum: 0-cell

i Descending Morse Complex

——

o |

| Collection of the descending cells |
k of all critical points of function f |




Morse Theory

+ Integral lines that converge to a critical point p
of index i form an i-cell called the descending
cell of p

- Descending cell of a maximum: 2-cell
» Descending cell of a saddle: 1-cell

+ Descending cell of a minimum: 0-cell

'Descending Morse Complex

——

o |
. |

| Collection of the descending cells |
k of all critical points of function f |




Morse Theory

Descending

+ Integral lines that converge to a critical point p >-coll

of index i form an i-cell called the descending
cell of p

- Descending cell of a maximum: 2-cell

» Descending cell of a saddle: 1-cell

+ Descending cell of a minimum: 0-cell

ii Descending Morse Complex

——

o |
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| Collection of the descending cells |
l& of all critical points of function f |




Morse Theory

Descending

+ Integral lines that converge to a critical point p >-coll

of index i form an i-cell called the descending
cell of p

- Descending cell of a maximum: 2-cell

» Descending cell of a saddle: 1-cell ,\ AW /] B
+ Descending cell of a minimum: 0-cell | - \[ AN

Descending Morse Complex

i T

/" E—— =

Collection of the descending cells
of all critical points of function f

— e R ——————— =

Descending
Morse complex

_




Morse Theory

+ Integral lines that originate at a critical point p
of index i form a (d-i)-cell called the ascending
cell of p

- Ascending cell of a minimum: 2-cell
+ Ascending cell of a saddle: 1-cell

+ Ascending cell of a maximum: 0-cell

—
|

- . e

| Collection of the ascending cells
k of all critical points of function f




Morse Theory

+ Integral lines that originate at a critical point p
of index i form a (d-i)-cell called the ascending
cell of p

- Ascending cell of a minimum: 2-cell
+ Ascending cell of a saddle: 1-cell

+ Ascending cell of a maximum: 0-cell

—
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| Collection of the ascending cells
k of all critical points of function f




Morse Theory

Ascending

+ Integral lines that originate at a critical point p >-cell

of index i form a (d-i)-cell called the ascending
cell of p

- Ascending cell of a minimum: 2-cell

+ Ascending cell of a saddle: 1-cell

+ Ascending cell of a maximum: 0-cell

—
|

.(h‘ Ascending Morse
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Morse Theory

Ascending

+ Integral lines that originate at a critical point p >-cell

of index i form a (d-i)-cell called the ascending
cell of p

- Ascending cell of a minimum: 2-cell

- Ascending cell of a saddle: 1-cell ’\ NV %
+ Ascending cell of a maximum: 0-cell | | 7

i

' Ascending Morse Complex: |

/” E—— = - = = e ——

Collection of the ascending cells
of all critical points of function f

= e e e S — e

Ascending
Morse complex

_




Morse Theory

+ Function f is a Morse-Smale function if its
ascending and descending Morse cells
intersect transversally

+ Morse-Smale (MS) complex is the complex
obtained from the mutual intersection of
all the ascending and descending cells




Morse Theory

+ In a 2D Morse-Smale complex:

- a 2-cell is a quadrilateral bounded by the sequence

maximum — saddle — minimum — saddle

®  maxima
o 2—saddles

@ l—saddles

+ each 2-saddle is connected to exactly two maxima o

+ In a 3D Morse-Smale complex: « minima_ | —o—s
A

+ each 1-saddle is connected to exactly two minima et o
o /g




Discrete Morse Theory

‘Morse Theory: s‘

Enables to analyze the topology of a shape
by studying functions defined on it

homological analysis |
Useful for < 5 Y
. shape segmentation

Various discretizations of Morse theory:

+ Piecewise linear Morse theory [Banchoff '67]
+ Watershed transform |[Meyer "94|
+ Discrete Morse theory [Forman "98]



Discrete Morse Theory

- Pee—
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1 ‘
Combinatorial counterpart of Morse theory: |
L : P 3ns et MRS = Y

e

- -

+ Introduced for cell complexes

+ Gives a compact homology-equivalent
model for a shape

+ Derivative free tool for computing

ksegmentations of shapes

_— —_— e




Discrete Morse Theory

/
|

| A matching Vis a collection of pairs (¢,7) such that:
+ 0, T are incident simplices of dimension k and k+1

+ each simplex of 2. is in at most one pair of V

\_




Discrete Morse Theory

| A matching Vis a collection of pairs (¢,7) such that:
+ 0, T are incident simplices of dimension k and k+1

+ each simplex of 2. is in at most one pair of V

1,T1) (02,72), ..., (O4-1,Tr-1), (O1,7T+)

such that

+ 0i:11s a k-simplex face of the (k+1)-simplex 7;

+ 0i41 1s different from o;




Discrete Morse Theory

///; o

. Unpaired simplices of dimension k are denoted as
L critical simplices of index k

————— = = _ E— I ———

e -

1‘1 Discrete Morse Complex: |

A chain complex whose:

+ k-cells «— critical simplices of index k

+ boundary relations are induced by V-paths

Thepremf

_~ T e —— = — e — = = E— —
~ N

- : : : .. \
| Given a Forman gradient V defined on a simplicial complex 2., |
the associated discrete Morse complex is
homologically equivalent to

__ _ - —— _— ——— —— - —




Discrete Morse Theory

| Filtered Forman Gradient: ,‘

I =l

=
'Given a filtration F of a simplicial complex %,

| a Forman gradient V' is a filtered Forman gradient of F if, for each pair (0,7) €V, |

. there exists p such that 0,7 € X¥ and 0,7 & XV

Filtration F naturally induces a filtration on the discrete Morse Complex

Theorem.

|

7~

[ If V is a filtered Forman gradient of F, then X and the associated discrete Morse |
\ complex have isomorphic persistent homology |




Discrete Morse Theory

Let 2 be a simplicial complex of dimension d
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Let 2 be a simplicial complex of dimension d
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Navigating the V-paths, one can retrieve:

+ Descending Morse complex I'p

- generated by collection of the d-cells representing the regions of influence
of the maxima of f: k-cells of I'p «— critical simplices of index k



Discrete Morse Theory

Let 2 be a simplicial complex of dimension d
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Navigating the V-paths, one can retrieve:

+ Ascending Morse complex I'y

- generated by collection of the d-cells representing the regions of influence
of the minima of f: (d-k)-cells of 'y «— critical simplices of index k



Discrete Morse Theory

Let 2 be a simplicial complex of dimension d
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Navigating the V-paths, one can retrieve:
4

Morse-Smale complex I'ms

generated by the connected components of the intersection of the
cells of the descending and ascending Morse complexes



Morse Theory

Aoy * AR e R MR
| Algorithms for computing Morse complexes: |

—

|
|

Boundary-based
+ Triangle meshes [Takahashi et al. ’95; Edelsbrunner et al. ’01; Bremer et al. ‘04]
+ Tetrahedral meshes [Edelsbrunner et al. *03]
+ Regular grids | Bajaj et al. '98; Schneider 04; Schneider "05]
Region-growing
+ Adding triangles | Magillo et al. ’99; Danovaro et al. ‘03|
+ Adding vertices [Gyulassy et al. '07]

Watershed
+ Topographic distance [Meyer et al. "90; Meyer '94]
+ Simulated immersion [Vincent et al. *91; Soille ‘04]
+ Rain falling simulation [Mangan et al. ’99; Stove et al. "00]

Forman-based

+ Constrained approaches [Cazals et al. "03; King et al. ’05; Gyulassy et al. ’08; Robins et al. ’11; Gyulassy et al. "12]
+ Unconstrained approaches [ Lewiner et al. ’03; Benedetti et al. '14; Harker et al. "14]
+ Gradient traversal [Gunther et al. ’12; Shivashankarar et al. ’12; Weiss et al. 13 ]




Discrete Morse Theory
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H A (filtered) Forman gradient can be build by using

kk the homology-preserving operators of reduction and coreduction
K = = = — . _

= - s S ———— e

= e _ — - |

'Reduction and Coreduction Operators: |

—

Let 0,7 be two incident simplices of dimension k and k+1, respectively

———— — e ———— —— e =

[ Pair (o,7)is called:
| Reduction if :
immediate coboundary of o = {1}

Coreduction if
immediate boundary of T = {c}




Discrete Morse Theory

‘& Gradient through Reductions: |

|Benedetti et al. 2014]

Input: 2 simplicial complex
Output: V gradient vector field, A set of critical simplices

Set 2« 2 Ve g A O
while 2’ # @ do

while 2’ admits a reduction pair (T, T) do
Ve Vu{(oT))}
2 < 2'\{oT}

end while

Let N be a top simplex in 2
A Al a1
2 S 2 T

end while
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‘a Gradient through Reductions: %f

[Benedetti et al. 2014]

Input: 2 simplicial complex
Output: V gradient vector field, A set of critical simplices

Set 2« 2 Ve g A O
while 2’ # @ do

while 2’ admits a reduction pair (T, T) do
Ve Vu{(oT))}
2 < 2'\{oT}

end while

Let N be a top simplex in 2
A Al a1
2 S 2 T

end while



Discrete Morse Theory

| Gradient through Coreductions:| [Harker et al. 2014]

Input: 2 simplicial complex
Output: V gradient vector field, A set of critical simplices

Set 2« 2 Ve g A O
while 2’ # @ do

while 2" admits a coreduction pair (0, T) do
Ve Vu{(oT))}
2 < 2'\{oT}

end while

Let N be a free simplex in 2
A Al a1
2 S 2 T

end while
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x[ Gradient through Coreduction [Harker et al. 2014]

Input: 2 simplicial complex
Output: V gradient vector field, A set of critical simplices

Set 2« 2 Ve g A O
while 2’ # @ do

while 2" admits a coreduction pair (0, T) do
Ve Vu{(oT))}
2 < 2'\{oT}

end while

Let N be a free simplex in 2
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| Gradient through Coreductions:| [Harker et al. 2014]

Input: 2 simplicial complex
Output: V gradient vector field, A set of critical simplices

Set 2« 2 Ve g A O
while 2’ # @ do

while 2" admits a coreduction pair (0, T) do
Ve Vu{(oT))}
2 < 2'\{oT}

end while

Let N be a free simplex in 2
A Al a1
2 S 2 T

end while



Discrete Morse Theory

Proposition.
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L Both the algorithms produce a Forman gradient on -

————— = — — —— e ————— =

Which approach is able to compute a Forman gradient
with less critical simplices?



Discrete Morse Theory

Proposztwn

-

(\ Both the algonthms produce a Forman gradlent on X

N =

Which approach is able to compute a Forman gradient
with less critical simplices?

Theorem

.// Any Forman gradient V on . produced by a reduct1on—based N

algorithm can be obtained through a coreduction-based algorithm;
and the converse is also true )

— e ——— B —




Discrete Morse Theory

Proof’s guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex 2 and run the reduction-based

approach on it

+ Take the sequence of reduction pairs and top simplex removals
operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents

for 2 a performable sequence of coreduction pairs and free simplex
removals

>
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Proof’s guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex 2 and run the reduction-based

approach on it

+ Take the sequence of reduction pairs and top simplex removals
operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents

for 2 a performable sequence of coreduction pairs and free simplex
removals

>




Discrete Morse Theory

i& Interleaved Approach: ‘*

Another class of approaches interleaving reductions and
coreductions has been considered

Proposition. o
(&Any interleaved approach produces a Forman gradient on X




Discrete Morse Theory

| Interleaved Approach |

Another class of approaches interleaving reductions and

coreductions has been considered
Proposition

can be obtained through a reduction-based algorithm or,
K\ equivalently, through a coreduction-based algorithm
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