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Computing Persistent Homology
[Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]Standard Algorithm:

From: To:

[1, ∞)
[3, ∞)[1, ∞)
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Computing Persistent Homology
[Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]Standard Algorithm:

Compute a reduced boundary matrix for Σf 
from which easily read the persistence pairs

From: To:

[1, ∞)
[3, ∞)[1, ∞)

[1, 2]
H0 H1

1

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

2

3



Computing Persistent Homology

Total Ordering on Σf:

Given a filtered simplicial complex, let us consider its filtering function f: 

f(σ) := min { p | σ ∈ Σp }

1

2

3
f

Conversely,   Σp := { σ ∈ Σ | f(σ) ≤ p} 

A sequence σ1, σ2, … , σn of the simplices of Σ such that: 

✦ if f(σi) < f(σj), then i < j
✦ if σi is a proper face of σj, then i < j



Computing Persistent Homology

A possible choice:

Set σ < σ’ if: 
✦ if f(σ) < f(σ’)

✦ if f(σ) = f(σ’) and dim(σ) < dim(σ’)

✦ if f(σ) = f(σ’) and dim(σ) = dim(σ’) and σ precedes σ’ with respect to            
the lexicographic order of their vertices



Computing Persistent Homology
Boundary Matrix:

 A square matrix M of size n x n defined by 

Mi,j :=

(
1 if �i is a face of �j s.t. dim(�i) = dim(�j)� 1

0 otherwise

13 14

4

18
E.g.,

✦ M4,18 = 1

✦ M14,18 = 1

✦ M13,18 = 0 



Computing Persistent Homology

Given a non-null column j of a boundary matrix M,

low(j) := max { i | Mi,j ≠ 0 }

A matrix R is called reduced if, for each pair of nun-null columns j1, j2,

low(j1) ≠ low(j2)

Reduced Matrix:

 Equivalently, if low function is injective on its domain of definition



Computing Persistent Homology
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

M is not reducedlow(10) = 7 = low(12)



Computing Persistent Homology
Reduction Algorithm:

Matrix R = M
for j = 1, …, n do 
while ∃ j’′ < j with low(j’) = low(j) do 

R.column(j) = R.column(j) + R.column(j’)
endwhile

endfor 
return R

At most n2 column additions O(n3) in the worst case

Time Complexity:



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

Initialize R to M, where

M is the boundary matrix of Σf  

expressed according with a total ordering of its simplices

Initialization:



For each j < 12,
there is no j’ < j such that

low(j’) = low(j)
So, increase j by 1

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

j < 12Step 1:



For j = 12, low(12) = 7

j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

Step 2:



jj’

For j = 12, low(12) = 7
column j’=10 is such that low(j’) = low(j) = 7

So, set 
column 12 := column 12 + column 10              low(12)=6

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 7 13 14 14 15 16 14 22

Step 2:



For j = 12, low(12) = 7
column j’=10 is such that low(j’) = low(j) = 7

So, set 
column 12 := column 12 + column 10              l low(12) = 6w(12)=6

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 6 13 14 14 15 16 14 22

jStep 2:



j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 6 13 14 14 15 16 14 22

Step 2:

For j = 12, low(12) = 6
column j’ = 9 is such that low(j’) = low(j) = 6

So, set 
column 12 := column 12 + column 9              l low(12)=3



jj’
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 6 13 14 14 15 16 14 22

Step 2:

For j = 12, low(12) = 6
column j’ = 9 is such that low(j’) = low(j) = 6

So, set 
column 12 := column 12 + column 9              l low(12)=3



For j = 12, low(12) = 6
column j’ = 9 is such that low(j’) = low(j) = 6

So, set 
column 12 := column 12 + column 9              l   low(12) = 3

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

jStep 2:



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

jStep 2:

For each j = 12,
there is no j’ < j such that

low(j’) = low(j) = 3
So, increase j by 1



12 < j < 19
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

Step 3:

For each 12 < j < 19,
there is no j’ < j such that

low(j’) = low(j)
So, increase j by 1



j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

Step 4:

For j = 19, low(19) = 14
column j’=18 is such that low(j’) = low(j) = 14

So, set 
column 19 := column 19 + column 18              l low(19) = 5w(12)=6



j’ j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 14 15 16 14 22

Step 4:

For j = 19, low(19) = 14
column j’= 18 is such that low(j’) = low(j) = 14

So, set 
column 19 := column 19 + column 18              l w(12)=6



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 5 15 16 14 22

jStep 4:

For j = 19, low(19) = 14
column j’= 18 is such that low(j’) = low(j) = 14

So, set 
column 19 := column 19 + column 18              l low(19) = 5w(12)=6



j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 5 15 16 14 22

Step 4:

For j = 19, low(19) = 5
column j’=11 is such that low(j’) = low(j) = 5

So, set 
column 19 := column 19 + column 11              l low(19) undefined



j’
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 5 15 16 14 22

Step 4: j

For j = 19, low(19) = 5
column j’= 11 is such that low(j’) = low(j) = 5

So, set 
column 19 := column 19 + column 11              l



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

Step 4: j

For j = 19, low(19) = 5
column j’= 11 is such that low(j’) = low(j) = 5

So, set 
column 19 := column 19 + column 11              l low(19)  undefined



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

Step 4: j

For each j = 19,
there is no j’ < j such that

low(j’) = low(j)
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

19 < j < 22Step 5:

For each 19 < j < 22,
there is no j’ < j such that

low(j’) = low(j)
So, increase j by 1



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

Step 6: j

For j = 22, low(22) = 14
column j’= 18 is such that low(j’) = low(j) = 14

So, set 
column 22 := column 22 + column 18              l low(22) = 13



j’
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 14 22

Step 6: j

For j = 22, low(22) = 14
column j’= 18 is such that low(j’) = low(j) = 14

So, set 
column 22 := column 22 + column 18              l



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 13 22

Step 6: j

For j = 22, low(22) = 14
column j’= 18 is such that low(j’) = low(j) = 14

So, set 
column 22 := column 22 + column 18              l low(22) = 13



j
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 13 22

Step 6:

For j = 22, low(22) = 13
column j’= 17 is such that low(j’) = low(j) = 13

So, set 
column 22 := column 22 + column 17              l



jj’
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 13 22

Step 6:

For j = 22, low(22) = 13
column j’= 17 is such that low(j’) = low(j) = 13

So, set 
column 22 := column 22 + column 17              l



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

jStep 6:

For j = 22, low(22) = 13
column j’= 17 is such that low(j’) = low(j) = 13

So, set 
column 22 := column 22 + column 17              l low(22)  undefined



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

jStep 6:

For each j = 22,
there is no j’ < j such that

low(j’) = low(j)
So, increase j by 1



For each j = 23,
there is no j’ < j such that

low(j’) = low(j) = 22
So, matrix R is reduced

i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

jStep 7:



i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

The algorithm returns the above reduced matrix R

Output:



[i, ∞)  corresponds to  [f(σi), ∞)      

[i, j]  corresponds to  [f(σi), f(σj)]      

Computing Persistent Homology
Retrieving Persistence Pairs:

✦ For each i = 0, …, n,

if there exists j such that low(j) = i                       [i, j] is a pair for R

✦ Once every i has been parsed,

if i is an unpaired value                       [i, ∞) is a pair for R

From pairs of R to the “actual” persistence pairs of Σf :

( homological degree = dim(σi) )



Computing Persistent Homology
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1
2 1 1
3 1 1
4 1 1 1 1
5 1
6 1 1
7 1 1
8
9
10
11
12
13 1
14 1
15 1
16 1
17 1
18 1
19
20
21
22 1
23

low 4 6 7 5 3 13 14 15 16 22

H0

H1

[1, ∞)
[2, ∞)
[3, 12]
[4, 8]
[5, 11]
[6, 9]
[7, 10]
[13, 17]
[14, 18]
[15, 20]
[16, 21]

[19, ∞)
[22, 23]



Computing Persistent Homology

1

2

3
fH0

[1, ∞)
[1, ∞)
[1, 2]
[2, 2]
[2, 2]
[2, 2]
[2, 2]
[3, 3]
[3, 3]
[3, 3]
[3, 3]

[1, ∞)
[2, ∞)
[3, 12]
[4, 8]
[5, 11]
[6, 9]
[7, 10]
[13, 17]
[14, 18]
[15, 20]
[16, 21]

H1
[3, ∞)
[3, 3]

[19, ∞)
[22, 23]

1 2 3

4 5 6 7

13 14 15 16

8

11

9 10

12

20 2117 18 19

22

23



Standard algorithm to compute (persistent) homology [Zomorodian, Carlsson 2005]: 
✦ Based on a matrix reduction
✦ Linear complexity in practical cases
✦ Quadratic complexity in the worst case

Direct approaches
✦ Zigzag persistent homology [Milosavljević et al. ’05] 
✦ Computation with a twist [Chen, Kerber ’11] 
✦ Dual algorithm [De Silvia et al. ’11] 
✦ Output-sensitive algorithm [Chen, Kerber ’13] 
✦ Multi-field algorithm [Boissonnat, Maria ’14] 
✦ Annotation-based methods [Boissonnat et al. ’13; 

Dey et al. ’14]

Coarsening approaches
✦ Topological operators and simplifications [Mrozek, Wanner ’10; Dlotko, Wagner ’14]
✦ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]

Distributed approaches
✦ Spectral sequences [Edelsbrunner, Harer ’08; Lipsky et 
al. ’11] 

✦ Constructive Mayer-Vietoris [Boltcheva et al. ’11]
✦ Multicore coreductions [Murty et al. ’13] 
✦ Multicore homology [Lewis, Zomorodian ’14]

✦ Persistent homology in chunks [Bauer et al. ‘14a]
✦ Distributed persistent computation [Bauer et al. ‘14b]

Several different strategies:

Computing Persistent Homology



Computing Persistent Homology

Direct approaches:
✦ Zigzag persistent homology [Milosavljević et al. ’05] 

✦ Computation with a twist [Chen, Kerber ’11] 

✦ Dual algorithm [De Silvia et al. ’11] 

✦ Output-sensitive algorithm [Chen, Kerber ’13] 

✦ Multi-field algorithm [Boissonnat, Maria ’14] 

✦ Annotation-based methods [Boissonnat et al. ’13; Dey et al. ’14]



Computing Persistent Homology

Distributed approaches:
✦ Spectral sequences [Edelsbrunner, Harer ’08; Lipsky et al. ’11] 

✦ Constructive Mayer-Vietoris [Boltcheva et al. ’11]

✦ Multicore coreductions [Murty et al. ’13] 

✦ Multicore homology [Lewis, Zomorodian ’14]

✦ Persistent homology in chunks [Bauer et al. ‘14a]

✦ Distributed persistent computation [Bauer et al. ‘14b]



Computing Persistent Homology

Coarsening approaches:

✦ Topological operators and simplifications [Dlotko, Wagner ’14]

Acyclic Subcomplexes
Reductions and Coreductions
Edge Contractions[Mrozek, Wanner ’10;]

Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Computing Persistent Homology

Coarsening approaches:

✦ Topological operators and simplifications [Dlotko, Wagner ’14]

• Acyclic Subcomplexes  [Mrozek et al. ‘08]
Reductions and Coreductions  [Mrozek et al. ‘10]
Edge Contractions  [Attali et al. ’11]

Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Computing Persistent Homology

Coarsening approaches:

✦ Topological operators and simplifications [Dlotko, Wagner ’14]

• Acyclic Subcomplexes  [Mrozek et al. ‘08]
• Reductions and Coreductions  [Mrozek et al. ‘10]

Edge Contractions  [Attali et al. ’11]

Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Computing Persistent Homology

Coarsening approaches:

✦ Topological operators and simplifications [Dlotko, Wagner ’14]

• Acyclic Subcomplexes  [Mrozek et al. ‘08]
• Reductions and Coreductions  [Mrozek et al. ‘10]
• Edge Contractions  [Attali et al. ’11]

Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Computing Persistent Homology

Coarsening approaches:

✦ Topological operators and simplifications [Dlotko, Wagner ’14]

• Acyclic Subcomplexes  [Mrozek et al. ‘08]
• Reductions and Coreductions  [Mrozek et al. ‘10]
• Edge Contractions  [Attali et al. ’11]

✦ Morse-based approaches [Robins et al. ’11; Harker et al. ’14; Fugacci et al. ’14]



Outline

Discrete Morse Theory and 
Persistent Homology

Persistent Homology 
Computation



Morse Theory [Milnor 1963, Matsumoto 2002]

✦ Topological tool for efficiently analyzing 
a shape by studying the behavior of a 
smooth scalar function f defined on it

✦ Relates the critical points of a smooth 
scalar function on a shape with their 
regions of influence

✦ Analysis of scalar fields requires 
extracting morphological features (e.g., 
critical points, integral lines and surfaces)



Morse Theory
Let f  be a real-valued C2-function defined on a        
d-dimensional manifold M

✦ Critical point of f :  any point on M in which      
the gradient of f vanishes

✦ Critical points can be degenerate or                  
non-degenerate
• A critical point p is degenerate iff the determinant      

the Hessian matrix H of the second order derivatives  
of function f  is null

Non-degenerate 
critical point

Degenerate critical points 
(monkey saddle and flat saddle)

Function f is a Morse function if and only if 
all its critical points are non-degenerate



✦ A d-dimensional Morse function f  has d+1  types of critical points,    
called i-saddles (i is the index of the critical point)
• For d = 2: minima, saddles and maxima
• For d = 3: minima, 1-saddles, 2- saddles and maxima

Morse Theory

Examples of non-Morse functions

Critical points 
of a 2D function

Critical points of a Morse function are 
isolated



Morse Theory
Separatrix line

Maximum

SaddleMinimum

Integral line
✦ An integral line of a smooth function f  

is a maximal path which is everywhere 
tangent to the gradient vector field of f

✦ Integral lines start and end at the 
critical points of f

✦ Integral lines that connect critical 
points of consecutive index are called 
separatrix lines



✦ Integral lines that converge to a critical point p 
of index i form an i-cell called the descending 
cell of p
• Descending cell of a maximum: 2-cell
• Descending cell of a saddle: 1-cell
• Descending cell of a minimum: 0-cell

Collection of the descending cells      
of all critical points of function f

Descending Morse Complex:

Morse Theory
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✦ Integral lines that originate at a critical point p 
of index i form a (d-i)-cell called the ascending 
cell of p
• Ascending cell of a minimum: 2-cell
• Ascending cell of a saddle: 1-cell
• Ascending cell of a maximum: 0-cell

Collection of the ascending cells         
of all critical points of function f

Ascending Morse Complex:

Morse Theory



✦ Integral lines that originate at a critical point p 
of index i form a (d-i)-cell called the ascending 
cell of p
• Ascending cell of a minimum: 2-cell
• Ascending cell of a saddle: 1-cell
• Ascending cell of a maximum: 0-cell

Collection of the ascending cells         
of all critical points of function f

Ascending Morse Complex:

Morse Theory



✦ Integral lines that originate at a critical point p 
of index i form a (d-i)-cell called the ascending 
cell of p
• Ascending cell of a minimum: 2-cell
• Ascending cell of a saddle: 1-cell
• Ascending cell of a maximum: 0-cell

Collection of the ascending cells         
of all critical points of function f

Ascending Morse Complex:

Ascending 
2-cell

Morse Theory



✦ Integral lines that originate at a critical point p 
of index i form a (d-i)-cell called the ascending 
cell of p
• Ascending cell of a minimum: 2-cell
• Ascending cell of a saddle: 1-cell
• Ascending cell of a maximum: 0-cell

Collection of the ascending cells         
of all critical points of function f

Ascending Morse Complex:

Ascending 
2-cell

Ascending 
Morse complex

Morse Theory



✦ Function f is a Morse-Smale function if its 
ascending and descending Morse cells 
intersect transversally

✦ Morse-Smale (MS) complex is the complex 
obtained from the mutual  intersection of 
all the ascending and descending cells

MS complex

MS                   
1-skeleton

Morse Theory



✦ In a 2D Morse-Smale complex: 
• a 2-cell is a quadrilateral bounded by the sequence

maximum – saddle – minimum – saddle

✦ In a 3D Morse-Smale complex:
✦ each 1-saddle is connected to exactly two minima
✦ each 2-saddle is connected to exactly two maxima

Morse Theory



Various discretizations of Morse theory:
✦ Piecewise linear Morse theory  [Banchoff ’67]

✦ Watershed transform  [Meyer ’94]

✦ Discrete Morse theory  [Forman ’98]

Morse Theory:

Enables to analyze the topology of a shape 
by studying functions defined on it

shape segmentation

homological analysis
Useful for

Discrete Morse Theory



Discrete Morse Theory

✦ Introduced for cell complexes
✦ Gives a compact homology-equivalent 

model for a shape
✦ Derivative free tool for computing 

segmentations of shapes

Combinatorial counterpart of Morse theory:



Discrete Morse Theory
Discrete Morse Theory:

Gradient of a function is simulated by a matching V of the simplices in 

A matching V is a collection of pairs (σ,τ) such that:
✦ σ, τ are incident simplices of dimension k and k+1
✦ each simplex of      is in at most one pair of V⌃

⌃



Discrete Morse Theory
Discrete Morse Theory:

Gradient of a function is simulated by a matching V of the simplices in 

A matching V is called Forman gradient if it is free of closed V-paths

A matching V is a collection of pairs (σ,τ) such that:
✦ σ, τ are incident simplices of dimension k and k+1
✦ each simplex of      is in at most one pair of V

 Sequence of pairs of V 

(σ1,τ1), (σ2,τ2), … , (σr-1,τr-1), (σr,τr)

such that 
✦ σi+1 is a k-simplex face of the (k+1)-simplex τi

✦ σi+1 is different from σi

V-path:

⌃

⌃
σ1

σ2

τ1

τ2



Unpaired simplices of dimension k are denoted as 
critical simplices of index k

A chain complex whose:
✦ k-cells          critical simplices of index k
✦ boundary relations are induced by V-paths

Discrete Morse Complex:

Theorem.

Given a Forman gradient V defined on a simplicial complex    ,
the associated discrete Morse complex is 

homologically equivalent to       .                                            

⌃

⌃

Discrete Morse Theory



If V is a filtered Forman gradient of F, then Σ and the associated discrete Morse 
complex have isomorphic persistent homology

Theorem.

Discrete Morse Theory
Filtered Forman Gradient:

Given a filtration F of a simplicial complex Σ, 
a Forman gradient V is a filtered Forman gradient of F if, for each pair (σ,τ) ∈ V, 

there exists p such that σ,τ ∈ Σp and σ,τ ∉ Σp-1

Filtration F naturally induces a filtration on the discrete Morse Complex



Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

Descending Morse complex 𝚪D

generated by collection of the d-cells representing the regions of influence of the 
maxima of f : k-cells of 𝚪D ⟷ critical simplices of index k

Discrete Morse Theory



Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

✦ Descending Morse complex 𝚪D

• generated by collection of the d-cells representing the regions of influence 
of the maxima of f : k-cells of 𝚪D ⟷ critical simplices of index k
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Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

✦ Ascending Morse complex 𝚪A

• generated by collection of the d-cells representing the regions of influence 
of the minima of f : (d-k)-cells of 𝚪A ⟷ critical simplices of index k

Discrete Morse Theory



Let Ʃ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

✦ Morse-Smale complex 𝚪MS

• generated by the connected components of the intersection of the 
cells of the descending and ascending Morse complexes

Discrete Morse Theory



Boundary-based
✦ Triangle meshes [Takahashi et al. ’95; Edelsbrunner et al. ’01; Bremer et al. ‘04]
✦ Tetrahedral meshes [Edelsbrunner et al. ’03]
✦ Regular grids [Bajaj et al. ’98; Schneider ’04; Schneider ’05]

Region-growing
✦ Adding triangles [Magillo et al. ’99; Danovaro et al. ‘03]
✦ Adding vertices [Gyulassy et al. ’07]

Watershed 
✦ Topographic distance [Meyer et al. ’90; Meyer ’94]
✦ Simulated immersion [Vincent et al. ’91; Soille ‘04] 
✦ Rain falling simulation [Mangan et al. ’99; Stove et al. ’00]

Forman-based
✦ Constrained approaches [Cazals et al. ’03; King et al. ’05; Gyulassy et al. ’08; Robins et al. ’11; Gyulassy et al. ’12] 
✦ Unconstrained approaches [Lewiner et al. ’03; Benedetti et al. ’14; Harker et al. ’14]
✦ Gradient traversal [Gunther et al. ’12; Shivashankarar et al. ’12; Weiss et al. ’13]

Algorithms for computing Morse complexes:

Morse Theory



Reduction and Coreduction Operators:

Let σ,τ be two incident simplices of dimension k and k+1, respectively

Pair (σ,τ) is called:
Reduction if

immediate coboundary of σ = {τ}
Coreduction if

immediate boundary of τ = {σ}

σ

στ

τ

A (filtered) Forman gradient can be build by using 
the homology-preserving operators of reduction and coreduction

Discrete Morse Theory



Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set  Σ’ ← Σ,  V ← ∅, A ← ∅

while Σ’ ≠ ∅ do

while Σ’ admits a reduction pair (σ, τ) do
V ← V ∪ { (σ, τ) }
Σ’ ← Σ’ \ { σ, τ }

end while

Let η be a top simplex in Σ’ 
 A ← A ∪ { η }
Σ’ ← Σ’ \ { η }

end while

Discrete Morse Theory
Gradient through Reductions: [Benedetti et al. 2014]
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Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set  Σ’ ← Σ,  V ← ∅, A ← ∅

while Σ’ ≠ ∅ do

while Σ’ admits a coreduction pair (σ, τ) do
V ← V ∪ { (σ, τ) }
Σ’ ← Σ’ \ { σ, τ }

end while

Let η be a free simplex in Σ’ 
 A ← A ∪ { η }
Σ’ ← Σ’ \ { η }

end while

Discrete Morse Theory
Gradient through Coreductions: [Harker et al. 2014]
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Both the algorithms produce a Forman gradient on 

Proposition.

Which approach is able to compute a Forman gradient 
with less critical simplices?

⌃
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Both the algorithms produce a Forman gradient on 

Proposition.

Theorem.

Which approach is able to compute a Forman gradient 
with less critical simplices?

Reduction-based and coreduction-based approaches are equivalent

Any Forman gradient V on     produced by a reduction-based 
algorithm can be obtained through a coreduction-based algorithm; 

and the converse is also true

⌃

⌃

Discrete Morse Theory



Proof’s guidelines: (from reduction-based to coreduction-based)
✦ Consider a simplicial complex Ʃ and run the reduction-based      

approach on it
✦ Take the sequence of reduction pairs and top simplex removals    

operated by the algorithm
✦ Reverse the order of the sequence: this new sequence represents            

for Ʃ a performable sequence of coreduction pairs and free simplex 
removals
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Any interleaved approach produces a Forman gradient on 

Proposition.

Another class of approaches interleaving reductions and 
coreductions has been considered

Interleaved Approach:
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Any interleaved approach produces a Forman gradient on 

Proposition.

Theorem.

Another class of approaches interleaving reductions and 
coreductions has been considered

Each interleaved approach has equivalent capabilities

Any Forman gradient V on     produced by an interleaved algorithm 
can be obtained through a reduction-based algorithm or, 

equivalently, through a coreduction-based algorithm

⌃

Interleaved Approach:

⌃

Discrete Morse Theory



Outline

Discrete Morse Theory and 
Persistent Homology

Persistent Homology 
Computation
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