Persistent Homology Computation and Discrete Morse Theory

Ulderico Fugacci
Kaiserslautern University of Technology
Department of Computer Science

Outline

Outline

Computing Persistent Homology

Standard Algorithm: [Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]

Computing Persistent Homology

Standard Algorithm:
[Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]

Compute a reduced boundary matrix for Σf from which easily read the persistence pairs

Computing Persistent Homology

Given a filtered simplicial complex, let us consider its filtering function f :

$$
f(\sigma):=\min \left\{p \mid \sigma \in \Sigma^{p}\right\}
$$

Conversely, $\Sigma^{p}:=\{\sigma \in \Sigma \mid f(\sigma) \leq p\}$

Total Ordering on Σ :

A sequence $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ of the simplices of Σ such that:

+ if $f\left(\sigma_{i}\right)<f\left(\sigma_{j}\right)$, then $i<j$
+ if σ_{i} is a proper face of σ_{j}, then $i<j$

Computing Persistent Homology

A possible choice:
Set $\sigma<\sigma^{\prime}$ if:

+ if $f(\sigma)<f\left(\sigma^{\prime}\right)$

+ if $f(\sigma)=f\left(\sigma^{\prime}\right)$ and $\operatorname{dim}(\sigma)<\operatorname{dim}\left(\sigma^{\prime}\right)$
+ if $f(\sigma)=f\left(\sigma^{\prime}\right)$ and $\operatorname{dim}(\sigma)=\operatorname{dim}\left(\sigma^{\prime}\right)$ and σ precedes σ^{\prime} with respect to the lexicographic order of their vertices

Computing Persistent Homology

Boundary Matrix:

A square matrix M of size $n \times n$ defined by
$M_{i, j}:= \begin{cases}1 & \text { if } \sigma_{i} \text { is a face of } \sigma_{j} \text { s.t. } \operatorname{dim}\left(\sigma_{i}\right)=\operatorname{dim}\left(\sigma_{j}\right)-1 \\ 0 & \text { otherwise }\end{cases}$

Computing Persistent Homology

Reduced Matrix:

Given a non-null column j of a boundary matrix M,

$$
\operatorname{low}(j):=\max \left\{i \mid M_{i, j} \neq 0\right\}
$$

A matrix R is called reduced if, for each pair of nun-null columns j_{1}, j_{2},

$$
\operatorname{low}\left(j_{1}\right) \neq \operatorname{low}\left(j_{2}\right)
$$

Equivalently, if low function is injective on its domain of definition

Computing Persistent Homology

$i \backslash j$	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1									1															
2										1														
3											1													
4									1			1						1	1					
5												1								1				
6										1			1								1			
7											1		1									1		
8																								
9																								
10																								
11																								
12																								
13																		1					1	
14																			1	1			1	
15																					1			
16																						1		
17																								1
18																								1
19																								
20																								
21																								
22																								1
23																								
low									4	6	7	5	7					13	14	14	15	16	14	22

$\operatorname{low}(10)=7=\operatorname{low}(12)$
M is not reduced

Computing Persistent Homology

Reduction Algorithm:

$$
\begin{aligned}
& \text { Matrix } R=M \\
& \text { for } j=1, \ldots, n \text { do } \\
& \text { while } \exists j^{\prime \prime}<j \text { with } \operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j) \text { do } \\
& \quad R . \operatorname{column}(j)=R . \operatorname{column}(j)+R . \operatorname{column}\left(j^{\prime}\right) \\
& \text { endwhile } \\
& \text { endfor } \\
& \text { return } R
\end{aligned}
$$

Time Complexity:
At most n^{2} column additions

$\mathrm{O}\left(n^{3}\right)$ in the worst case

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1								1				
6									1			1								1			
7										1		1									1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1	1			1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	7					13	14	14	15	16	14	22

Initialize R to M, where
M is the boundary matrix of Σ^{f}
expressed according with a total ordering of its simplices

Step 1:

$$
j<12
$$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1									1			
6									1			1								1			
7										1		1									1		
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																1	1			1			
15																		1					
16																			1				
17																				1			
18																					1		
19																							
20																							
21																					1		
22																							
23																							
low							4	6	7	5	7					13	14	14	15	16	14	22	

For each $j<12$,
there is no $j^{\prime}<j$ such that

$$
\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
$$

So, increase \boldsymbol{j} by 1

Step 2:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1								1				
6									1			1								1			
7										1		1									1		
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																	1	1			1		
15																			1				
16																				1			
17																					1		
18																				1			
19																							
20																							
21																							
22																						1	
23																							
$l o w$							4	6	7	5	7					13	14	14	15	16	14	22	

For $j=12, \operatorname{low}(12)=7$

Step 2:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3										1													
4								1			1						1	1					
5											1								1				
6									1			1								1			
7										1		1									1		
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																	1	1			1		
15																			1				
16																				1			
17																						1	
18																						1	
19																							
20																							
21																					1		
22																							
23																							
low							4	6	7	5	7					13	14	14	15	16	14	22	

For $j=12, \operatorname{low}(12)=7$
column $j^{\prime}=10$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=7$
So, set
column $12:=$ column $12+$ column 10

Step 2:

$i \backslash j$	1		2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1										1															
2											1														
3												1		1											
4										1			1						1	1					
5													1								1				
6											1			1								1			
7												1											1		
8																									
9																									
10																									
11																									
12																									
13																			1					1	
14																				1	1			1	
15																						1			
16																							1		
17																									1
18																									1
19																									
20																									
21																									
22																									1
23																									
low										4	6	7	5	6					13	14	14	15	16	14	22

For $j=12, \operatorname{low}(12)=7$
column $j^{\prime}=10$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=7$
So, set
column $12:=$ column $12+$ column $10 \longrightarrow \operatorname{low}(12)=6$

Step 2:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3									1		1												
4							1			1						1	1						
5										1								1					
6								1			1								1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																		1					
16																			1				
17																					1		
18																					1		
19																							
20																							
21																							
22																				1			
23																							
$l o w$						4	6	7	5	6					13	14	14	15	16	14	22		

For $j=12, \operatorname{low}(12)=6$

Step 2:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1														
3									1		1												
4							1			1						1	1						
5										1								1					
6								1			1								1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																	1						
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																			1				
23									4	6	7	5	6					13	14	14	15	16	14
$l o w$	22																						

For $j=12, \operatorname{low}(12)=6$ column $j^{\prime}=9$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=6$
So, set
column $12:=$ column $12+$ column 9

Step 2:

$i \backslash j$	1		2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1										1															
2											1			1											
3												1		1											
4										1			1						1	1					
5													1								1				
6											1											1			
7												1											1		
8																									
9																									
10																									
11																									
12																									
13																			1					1	
14																				1	1			1	
15																						1			
16																							1		
17																									1
18																									1
19																									
20																									
21																									
22																									1
23																									
low										4	6	7	5	3					13	14	14	15	16	14	22

For $j=12, \operatorname{low}(12)=6$
column $j^{\prime}=9$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=6$
So, set
column $12:=$ column $12+$ column $9 \longrightarrow \operatorname{low}(12)=3$

Step 2:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1								1					
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																	1						
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																			1				
23										4	6	7	5	3					13	14	14	15	16
14	14	22																					
$l o w$																							

For each $j=12$,
there is no $j^{\prime}<j$ such that
$\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=3$
So, increase \boldsymbol{j} by 1

$$
12<j<19
$$

$i \backslash j$	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1									1															
2										1			1											
3											1		1											
4									1			1						1	1					
5												1								1				
6										1											1			
7											1											1		
8																								
9																								
10																								
11																								
12																								
13																		1					1	
14																			1	1			1	
15																					1			
16																						1		
17																								1
18																								1
19																								
20																								
21																								
22																								1
23																								
low									4	6	7	5	3					13	14	14	15	16	14	22

For each $12<j<19$,
there is no $j^{\prime}<j$ such that

$$
\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
$$

So, increase \boldsymbol{j} by $\mathbf{1}$

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1								1					
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1	1			1			
15																		1					
16																			1				
17																					1		
18																					1		
19																							
20																							
21																							
22																				1			
23																							
$l o w$						4	6	7	5	3					13	14	14	15	16	14	22		

For $j=19, \operatorname{low}(19)=14$

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1								1				
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1	1			1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14	14	15	16	14	22

For $j=19, \operatorname{low}(19)=14$ column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column $19:=$ column $19+$ column 18

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1	1				
5											1								1				
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1				1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14	5	15	16	14	22

For $j=19, \operatorname{low}(19)=14$ column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column $19:=$ column $19+$ column $18 \longrightarrow$ low $(\mathbf{1 9)}=5$

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1	1					
5										1								1					
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1				1			
15																		1					
16																			1				
17																					1		
18																					1		
19																							
20																							
21																							
22																				1			
23																							
$l o w$						4	6	7	5	3					13	14	5	15	16	14	22		

For $j=19, \operatorname{low}(19)=5$

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1	1					
5										1								1					
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1				1			
15																	1						
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																				1			
23																							
$l o w$																							
10						4	6	7	5	3					13	14	5	15	16	14	22		

For $j=19, \operatorname{low}(19)=5$ column $j^{\prime}=11$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=5$
So, set
column $19:=$ column $19+$ column 11

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1				1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14		15	16	14	22

For $j=19, \operatorname{low}(19)=5$ column $j^{\prime}=11$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=5$
So, set
column $19:=$ column $19+$ column $11 \longrightarrow$ low(19) undefined

Step 4:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																		1				1	
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14		15	16	14	22

For each $j=19$,
there is no $j^{\prime}<j$ such that

$$
\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
$$

So, increase \boldsymbol{j} by 1

Step 5:

$19<j<22$

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1					1	
14																	1				1		
15																			1				
16																				1			
17																						1	
18																					1		
19																							
20																							
21																					1		
22																							
23																							
low							4	6	7	5	3					13	14		15	16	14	22	

For each $19<j<22$,
there is no $j^{\prime}<j$ such that
$\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)$
So, increase \boldsymbol{j} by 1

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1													
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14																1				1			
15																		1					
16																			1				
17																					1		
18																					1		
19																							
20																							
21																							
22																				1			
23																							
$l o w$						4	6	7	5	3					13	14		15	16	14	22		

For $j=22, \operatorname{low}(22)=14$

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1													
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1					1			
14															1				1				
15																	1						
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																				1			
23																							
$l o w$																							
10						4	6	7	5	3					13	14		15	16	14	22		

For $j=22, \operatorname{low}(22)=14$
column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column $22:=$ column $22+$ column 18

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1				1	
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																					1		
13																1					1		
14																	1						
15																			1				
16																				1			
17																						1	
18																					1		
19																							
20																							
21																						1	
22																							
23																							
low							4	6	7	5	3					13	14		15	16	13	22	

For $j=22, \operatorname{low}(22)=14$
column $j^{\prime}=18$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=14$
So, set
column $22:=$ column $22+$ column $18 \longrightarrow$ loww $(22)=13$

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1				1	
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																					1		
13																1					1		
14																	1						
15																			1				
16																				1			
17																					1		
18																					1		
19																							
20																							
21																						1	
22																							
23																							
low							4	6	7	5	3					13	14		15	16	13	22	

For $j=22, \operatorname{low}(22)=13$

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1				1	
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																1					1		
14																	1						
15																			1				
16																				1			
17																						1	
18																					1		
19																							
20																							
21																						1	
22																							
23																							
$l o w$								4	6	7	5	3					13	14		15	16	13	22

For $j=22, \operatorname{low}(22)=13$
column $j^{\prime}=17$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=13$
So, set
column 22 := column $22+$ column 17

Step 6:

$i \backslash j$	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1									1															
2										1			1											
3											1		1											
4									1			1						1	1					
5												1												
6										1											1			
7											1											1		
8																								
9																								
10																								
11																								
12																								
13																		1						
14																			1					
15																					1			
16																						1		
17																								1
18																								1
19																								
20																								
21																								
22																								1
23																								
low									4	6	7	5	3					13	14		15	16		22

For $j=22, \operatorname{low}(22)=13$
column $j^{\prime}=17$ is such that $\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=13$
So, set
column $22:=$ column $22+$ column $17 \longrightarrow$ low(22) undefined

Step 6:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1													
6								1											1				
7									1											1			
8																							
9																							
10																							
11																							
12																							
13															1								
14															1								
15																	1						
16																		1					
17																				1			
18																				1			
19																							
20																							
21																							
22																				1			
23																							
$l o w$																							
10						4	6	7	5	3					13	14		15	16		22		

For each $j=22$,
there is no $j^{\prime}<j$ such that

$$
\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)
$$

So, increase \boldsymbol{j} by 1

Step 7:

$i \backslash j$	1	2	3	3	4	5	6	7	8	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1									1	1															
2											1			1											
3												1		1											
4									1	1			1						1	1					
5													1												
6											1											1			
7												1											1		
8																									
9																									
10																									
11																									
12																									
13																			1						
14																				1					
15																						1			
16																							1		
17																									1
18																									1
19																									
20																									
21																									
22																									1
23																									
low										4	6	7	5	3					13	1		15	16		22

For each $j=23$,
there is no $j^{\prime}<j$ such that

$$
\operatorname{low}\left(j^{\prime}\right)=\operatorname{low}(j)=22
$$

So, matrix R is reduced

Output:

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3										1		1											
4								1			1						1	1					
5											1												
6									1											1			
7										1											1		
8																							
9																							
10																							
11																							
12																							
13																	1						
14																		1					
15																				1			
16																					1		
17																							1
18																							1
19																							
20																							
21																							
22																							1
23																							
low								4	6	7	5	3					13	14		15	16		22

The algorithm returns the above reduced matrix R

Computing Persistent Homology

Retrieving Persistence Pairs:

+ For each $i=0, \ldots, n$,
if there exists j such that $\operatorname{low}(j)=i$

$[i, j]$ is a pair for R
+ Once every i has been parsed, if i is an unpaired value
 $[i, \infty)$ is a pair for R

From pairs of R to the "actual" persistence pairs of Σf :
$[i, j]$ corresponds to $\left[f\left(\sigma_{i}\right), f\left(\sigma_{j}\right)\right.$]
$[i, \infty)$ corresponds to $\left[f\left(\sigma_{i}\right), \infty\right)$
$\left(\right.$ homological degree $\left.=\operatorname{dim}\left(\sigma_{i}\right)\right)$

Computing Persistent Homology

H_{0} $[1, \infty)$ $[2, \infty)$ [3, 12]
[4, 8]
$[5,11]$
[6, 9]
[7, 10]
[13, 17]
[14, 18]
[15, 20]
[16, 21]
H_{1}
$[19, \infty)$
[22, 23]

$i \backslash j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1								1															
2									1			1											
3									1		1												
4							1			1						1	1						
5										1													
6							1											1					
7								1											1				
8																							
9																							
10																							
11																							
12																							
13															1								
14															1								
15																		1					
16																		1					
17																				1			
18																					1		
19																							
20																							
21																							
22																					1		
23																							
$l o w$							4	6	7	5	3					13	14		15	16	22		

Computing Persistent Homology

Computing Persistent Homology

Standard algorithm to compute (persistent) homology [Zomorodian, Carlsson 2005]:

+ Based on a matrix reduction
+ Linear complexity in practical cases
+ Quadratic complexity in the worst case

Several different strategies:

Direct approaches

+ Zigzag persistent homology [Milosavljević et al. '05]
+ Computation with a twist [Chen, Kerber '11]
+ Dual algorithm [De Silvia et al. '11]
+ Output-sensitive algorithm [Chen, Kerber '13]
+ Multi-field algorithm [Boissonnat, Maria '14]
- Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

Distributed approaches

+ Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
+ Constructive Mayer-Vietoris [Boltcheva et al. '11]
+ Multicore coreductions [Murty et al. '13]
+ Multicore homology [Lewis, Zomorodian '14]
+ Persistent homology in chunks [Bauer et al. '14a]
* Distributed persistent computation [Bauer et al. '14b]

Coarsening approaches

+ Topological operators and simplifications [Mrozek, Wanner '10; Dlotko, Wagner '14]
+ Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Computing Persistent Homology

Direct approaches:

+ Zigzag persistent homology [Milosavljević et al. ’05]
+ Computation with a twist [Chen, Kerber '11]
+ Dual algorithm [De Silvia et al. '11]
+ Output-sensitive algorithm [Chen, Kerber '13]
+ Multi-field algorithm [Boissonnat, Maria '14]
+ Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

Computing Persistent Homology

Distributed approaches:

+ Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
+ Constructive Mayer-Vietoris [Boltcheva et al. '11]
+ Multicore coreductions [Murty et al. '13]
+ Multicore homology [Lewis, Zomorodian '14]
+ Persistent homology in chunks [Bauer et al. '14a]
+ Distributed persistent computation [Bauer et al. '14b]

Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner '14]

Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner '14]
- Acyclic Subcomplexes [Mrozek et al. ‘08]

Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner '14]
- Acyclic Subcomplexes [Mrozek et al. '08]
- Reductions and Coreductions [Mrozek et al. '10]

Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner '14]
- Acyclic Subcomplexes [Mrozek et al. ‘08]
- Reductions and Coreductions [Mrozek et al. '10]
- Edge Contractions [Attali et al. '11]

Computing Persistent Homology

Coarsening approaches:

+ Topological operators and simplifications [Dlotko, Wagner '14]
- Acyclic Subcomplexes [Mrozek et al. ‘08]
- Reductions and Coreductions [Mrozek et al. '10]
- Edge Contractions [Attali et al. '11]
+ Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

Outline

Morse Theory [Milnor 1963, Matsumoto 2002]

+ Topological tool for efficiently analyzing a shape by studying the behavior of a smooth scalar function f defined on it
- Relates the critical points of a smooth scalar function on a shape with their regions of influence
+ Analysis of scalar fields requires extracting morphological features (e.g.,
 critical points, integral lines and surfaces)

Morse Theory

Let f be a real-valued C^{2}-function defined on a d-dimensional manifold M

+ Critical point of f : any point on M in which the gradient of f vanishes

Non-degenerate critical point

+ Critical points can be degenerate or non-degenerate
- A critical point p is degenerate iff the determinant the Hessian matrix H of the second order derivatives of function f is null

Function f is a Morse function if and only if all its critical points are non-degenerate

Degenerate critical points (monkey saddle and flat saddle)

Morse Theory

Critical points of a Morse function are isolated

Examples of non-Morse functions

- A d-dimensional Morse function f has $d+1$ types of critical points, called i-saddles (i is the index of the critical point)
- For $d=2$: minima, saddles and maxima
- For $d=3$: minima, 1 -saddles, 2- saddles and maxima

Critical points of a 2D function

Morse Theory

* An integral line of a smooth function f is a maximal path which is everywhere tangent to the gradient vector field of f
+ Integral lines start and end at the critical points of f
+ Integral lines that connect critical points of consecutive index are called separatrix lines

Morse Theory

+ Integral lines that converge to a critical point p of index i form an i-cell called the descending cell of p
- Descending cell of a maximum: 2-cell
- Descending cell of a saddle: 1-cell
- Descending cell of a minimum: 0-cell

Descending Morse Complex:

Collection of the descending cells of all critical points of function f

Morse Theory

+ Integral lines that converge to a critical point p of index i form an i-cell called the descending cell of p
- Descending cell of a maximum: 2-cell
- Descending cell of a saddle: 1-cell
- Descending cell of a minimum: 0-cell

Descending Morse Complex:

Collection of the descending cells of all critical points of function f

Morse Theory

+ Integral lines that converge to a critical point p of index i form an i-cell called the descending cell of p
- Descending cell of a maximum: 2-cell
- Descending cell of a saddle: 1-cell
- Descending cell of a minimum: 0-cell

Descending Morse Complex:

Collection of the descending cells of all critical points of function f

Morse Theory

+ Integral lines that converge to a critical point p of index i form an i-cell called the descending cell of p
- Descending cell of a maximum: 2-cell
- Descending cell of a saddle: 1-cell
- Descending cell of a minimum: 0-cell

Descending Morse Complex:

Collection of the descending cells of all critical points of function f

Morse Theory

+ Integral lines that originate at a critical point p of index i form a ($d-i$)-cell called the ascending cell of p
- Ascending cell of a minimum: 2-cell
- Ascending cell of a saddle: 1-cell
- Ascending cell of a maximum: 0-cell

Ascending Morse Complex:

Collection of the ascending cells of all critical points of function f

Morse Theory

+ Integral lines that originate at a critical point p of index i form a ($d-i$)-cell called the ascending cell of p
- Ascending cell of a minimum: 2-cell
- Ascending cell of a saddle: 1-cell
- Ascending cell of a maximum: 0-cell

Ascending Morse Complex:

Collection of the ascending cells of all critical points of function f

Morse Theory

+ Integral lines that originate at a critical point p of index i form a ($d-i$)-cell called the ascending cell of p
- Ascending cell of a minimum: 2-cell
- Ascending cell of a saddle: 1-cell
- Ascending cell of a maximum: 0-cell

Ascending Morse Complex:

Collection of the ascending cells of all critical points of function f

Morse Theory

+ Integral lines that originate at a critical point p of index i form a ($d-i$)-cell called the ascending cell of p
- Ascending cell of a minimum: 2-cell
- Ascending cell of a saddle: 1-cell
- Ascending cell of a maximum: 0-cell

Ascending Morse Complex:

Collection of the ascending cells of all critical points of function f

Morse Theory

* Function f is a Morse-Smale function if its ascending and descending Morse cells intersect transversally

* Morse-Smale (MS) complex is the complex obtained from the mutual intersection of all the ascending and descending cells

Morse Theory

+ In a 2D Morse-Smale complex:
- a 2-cell is a quadrilateral bounded by the sequence maximum - saddle - minimum - saddle

+ In a 3D Morse-Smale complex:
+ each 1-saddle is connected to exactly two minima
+ each 2-saddle is connected to exactly two maxima

Discrete Morse Theory

Morse Theory:

Enables to analyze the topology of a shape by studying functions defined on it

Various discretizations of Morse theory:

+ Piecewise linear Morse theory [Banchoff '67]
+ Watershed transform [Meyer '94]
+ Discrete Morse theory [Forman '98]

Discrete Morse Theory

Combinatorial counterpart of Morse theory:

* Introduced for cell complexes

* Gives a compact homology-equivalent model for a shape
* Derivative free tool for computing segmentations of shapes

Discrete Morse Theory

Discrete Morse Theory:

Gradient of a function is simulated by a matching V of the simplices in Σ
A matching V is a collection of pairs (σ, τ) such that:

+ σ, τ are incident simplices of dimension k and $k+1$
+ each simplex of Σ is in at most one pair of V

Discrete Morse Theory

Discrete Morse Theory:

Gradient of a function is simulated by a matching V of the simplices in Σ

A matching V is a collection of pairs (σ, τ) such that:

+ σ, τ are incident simplices of dimension k and $k+1$
+ each simplex of Σ is in at most one pair of V
V-path: Sequence of pairs of V

$$
\left(\sigma_{1}, \tau_{1}\right),\left(\sigma_{2}, \tau_{2}\right), \ldots,\left(\sigma_{r-1}, \tau_{r-1}\right),\left(\sigma_{r}, \tau_{r}\right)
$$

such that

+ σ_{i+1} is a k-simplex face of the $(k+1)$-simplex τ_{i}
- σ_{i+1} is different from σ_{i}

A matching V is called Forman gradient if it is free of closed V-paths

Discrete Morse Theory

Unpaired simplices of dimension k are denoted as critical simplices of index k

Discrete Morse Complex:

A chain complex whose:

+ k-cells \longleftrightarrow critical simplices of index k
+ boundary relations are induced by V-paths

Theorem.

Given a Forman gradient V defined on a simplicial complex Σ, the associated discrete Morse complex is homologically equivalent to Σ

Discrete Morse Theory

Filtered Forman Gradient:

Given a filtration F of a simplicial complex Σ, a Forman gradient V is a filtered Forman gradient of F if, for each pair $(\sigma, \tau) \in V$, there exists p such that $\sigma, \tau \in \Sigma^{p}$ and $\sigma, \tau \notin \Sigma^{p-1}$

Filtration F naturally induces a filtration on the discrete Morse Complex

Theorem.

If V is a filtered Forman gradient of F, then Σ and the associated discrete Morse complex have isomorphic persistent homology

Discrete Morse Theory

Let Σ be a simplicial complex of dimension d

Discrete Morse Theory

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

+ Descending Morse complex Γ_{D}
- generated by collection of the d-cells representing the regions of influence of the maxima of $f: k$-cells of $\Gamma_{D} \longleftrightarrow$ critical simplices of index k

Discrete Morse Theory

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

+ Ascending Morse complex Γ_{A}
- generated by collection of the d-cells representing the regions of influence of the minima of $f:(d-k)$-cells of $\Gamma_{A} \longleftrightarrow$ critical simplices of index k

Discrete Morse Theory

Let Σ be a simplicial complex of dimension d

Navigating the V-paths, one can retrieve:

+ Morse-Smale complex $\boldsymbol{\Gamma}_{M S}$
- generated by the connected components of the intersection of the cells of the descending and ascending Morse complexes

Morse Theory

Algorithms for computing Morse complexes:

Boundary-based

+ Triangle meshes [Takahashi et al. '95; Edelsbrunner et al. '01; Bremer et al. '04]
- Tetrahedral meshes [Edelsbrunner et al. '03]
+ Regular grids [Bajaj et al. '98; Schneider '04; Schneider '05]
Region-growing
- Adding triangles [Magillo et al. '99; Danovaro et al. '03]
- Adding vertices [Gyulassy et al. '07]

Watershed

+ Topographic distance [Meyer et al. '90; Meyer '94]
+ Simulated immersion [Vincent et al. '91; Soille '04]
+ Rain falling simulation [Mangan et al. '99; Stove et al. '00]
Forman-based

+ Constrained approaches [Cazals et al. '03; King et al. '05; Gyulassy et al. '08; Robins et al. '11; Gyulassy et al. '12]
+ Unconstrained approaches [Lewiner et al. '03; Benedetti et al. '14; Harker et al. '14]
* Gradient traversal [Gunther et al. '12; Shivashankarar et al. '12; Weiss et al. '13]

Discrete Morse Theory

A (filtered) Forman gradient can be build by using the homology-preserving operators of reduction and coreduction

Reduction and Coreduction Operators:

Let σ, τ be two incident simplices of dimension k and $k+1$, respectively
Pair (σ, τ) is called:

Reduction if
immediate coboundary of $\sigma=\{\tau\}$

Coreduction if
immediate boundary of $\tau=\{\sigma\}$

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Reductions:
 [Benedetti et al. 2014]

Input: Σ simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a reduction pair (σ, T) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a top simplex in Σ^{\prime}

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\sum^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Gradient through Coreductions:

[Harker et al. 2014]

Input: \sum simplicial complex
Output: V gradient vector field, A set of critical simplices

Set $\Sigma^{\prime} \leftarrow \Sigma, V \leftarrow \varnothing, A \leftarrow \varnothing$
while $\Sigma^{\prime} \neq \varnothing$ do
while Σ ' admits a coreduction pair (σ, \mathbf{T}) do
$V \leftarrow V \cup\{(\sigma, T)\}$
$\Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\sigma, T\}$
end while

Let η be a free simplex in Σ '

$$
\begin{aligned}
& A \leftarrow A \cup\{\eta\} \\
& \Sigma^{\prime} \leftarrow \Sigma^{\prime} \backslash\{\eta\}
\end{aligned}
$$

end while

Discrete Morse Theory

Proposition.

Both the algorithms produce a Forman gradient on Σ
Which approach is able to compute a Forman gradient with less critical simplices?

Discrete Morse Theory

Proposition.

Both the algorithms produce a Forman gradient on Σ
Which approach is able to compute a Forman gradient with less critical simplices?

Reduction-based and coreduction-based approaches are equivalent
Theorem.
Any Forman gradient V on Σ produced by a reduction-based algorithm can be obtained through a coreduction-based algorithm; and the converse is also true

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Proof's guidelines: (from reduction-based to coreduction-based)

+ Consider a simplicial complex Σ and run the reduction-based approach on it
+ Take the sequence of reduction pairs and top simplex removals operated by the algorithm
+ Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals

Discrete Morse Theory

Interleaved Approach:

Another class of approaches interleaving reductions and coreductions has been considered
Proposition.
Any interleaved approach produces a Forman gradient on Σ

Discrete Morse Theory

Interleaved Approach:

Another class of approaches interleaving reductions and coreductions has been considered

Proposition.

Any interleaved approach produces a Forman gradient on Σ

Each interleaved approach has equivalent capabilities

Theorem.

Any Forman gradient V on Σ produced by an interleaved algorithm can be obtained through a reduction-based algorithm or, equivalently, through a coreduction-based algorithm

Outline

Thank you

Ulderico Fugacci
TU Kaiserslautern, Dept. of Computer Science

