"Persistent Homology" Summer School - Rabat

#### Persistent Homology Computation and Discrete Morse Theory

#### **Ulderico Fugacci**

*Kaiserslautern University of Technology* Department of Computer Science



July 4, 2017

# Outline Persistent Homology Computation





**Standard Algorithm:** 

[Edelsbrunner et al. 2002; Zomorodian, Carlsson 2005]





Compute a *reduced boundary matrix* for  $\Sigma^f$  from which easily read the persistence pairs

Given a filtered simplicial complex, let us consider its *filtering function f*:



A sequence  $\sigma_1, \sigma_2, \ldots, \sigma_n$  of the simplices of  $\Sigma$  such that:

- if  $f(\sigma_i) < f(\sigma_j)$ , then i < j
- if  $\sigma_i$  is a proper face of  $\sigma_j$ , then i < j



- if  $f(\sigma) = f(\sigma')$  and  $dim(\sigma) < dim(\sigma')$
- if f(σ) = f(σ') and dim(σ) = dim(σ') and σ precedes σ' with respect to
   the *lexicographic order* of their vertices

**Boundary Matrix:** 

A square matrix *M* of size *n* x *n* defined by

$$M_{i,j} := \begin{cases} 1 & \text{if } \sigma_i \text{ is a face of } \sigma_j \text{ s.t. } \dim(\sigma_i) = \dim(\sigma_j) - 1 \\ 0 & \text{otherwise} \end{cases}$$



**Reduced Matrix:** 

Given a non-null column *j* of a boundary matrix *M*,

 $low(j) := max \{ i \mid M_{i,j} \neq 0 \}$ 

A matrix **R** is called *reduced* if, for each pair of nun-null columns  $j_1, j_2$ ,  $low(j_1) \neq low(j_2)$ 

*Equivalently,* if low function is *injective* on its domain of definition

| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 7  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

low(10) = 7 = low(12)



*M* is **not** reduced

**Reduction Algorithm:** 

```
Matrix R = M
for j = 1, ..., n do
while ∃ j'' < j with low(j') = low(j) do
    R.column(j) = R.column(j) + R.column(j')
    endwhile
endfor
return R</pre>
```

Time Complexity:

At most  $n^2$  column additions



 $O(n^3)$  in the worst case

#### Initialization:

| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 7  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

Initialize *R* to *M*, where

*M* is the *boundary matrix* of  $\Sigma^f$ 

expressed according with a *total ordering* of its simplices



For each *j* < 12,

there is **no** j' < j such that low(j') = low(j)

So, **increase** *j* by 1

| an a share taken a taken a sana a |   |   |   |   |   |   |   |   |   |    |    | J  |    |    |    |    |    |    |    |    |    |    |    |
|----------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $i \setminus j$                                                                                                | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1                                                                                                              |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2                                                                                                              |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3                                                                                                              |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4                                                                                                              |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5                                                                                                              |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6                                                                                                              |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |
| 7                                                                                                              |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    | 1  |    |    |
| 8                                                                                                              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9                                                                                                              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23                                                                                                             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low                                                                                                            |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 7  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

1

For j = 12, low(12) = 7

Step 2:



*column j'=10* is such that low(j') = low(j) = 7

So, set

*column* 12 := *column* 12 + *column* 10



*column j'=10* is such that low(j') = low(j) = 7

So, set

Step 2:

 $column 12 := column 12 + column 10 \longrightarrow low(12) = 6$ 

1

|                 |   |   |   |   |   |   |   |   |   |    |    | J  |    |    |    |    |    |    |    |    |    |    |    |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 6  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

Step 2:

1



*column* j' = 9 is such that low(j') = low(j) = 6

So, set

column 12 := column 12 + column 9

#### Step 2:



*column* j' = 9 is such that low(j') = low(j) = 6

So, set

Step 2:

 $column 12 := column 12 + column 9 \longrightarrow low(12) = 3$ 

1

| a destante a sur a su | 1.780 SW1-1-1 |   |   |   |   |   |   |   |   |    |    | J  |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------------------------------------------------------------------------------------------|---------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| i j                                                                                                             | 1             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1                                                                                                               |               |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2                                                                                                               |               |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3                                                                                                               |               |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4                                                                                                               |               |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5                                                                                                               |               |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6                                                                                                               |               |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7                                                                                                               |               |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8                                                                                                               |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9                                                                                                               |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23                                                                                                              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low                                                                                                             |               |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

For each j = 12,

Step 2:

there is **no** j' < j such that low(j') = low(j) = 3

So, **increase** *j* by 1

#### Step 3: 12 < *j* < 19 $i \backslash j$ $\overline{7}$ low

For each **12** < *j* < **19**,

there is **no** j' < j such that low(j') = low(j)

So, **increase** *j* by 1

|                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

1

For j = 19, low(19) = 14

Step 4:

| Ste | р4:             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | j' | j  |    |    |    |    |
|-----|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| [   | $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
|     | 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
|     | 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  |    |    | 1  |    |
|     | 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 | 14 | 15 | 16 | 14 | 22 |

*column j'= 18* is such that low(j') = low(j) = 14

So, set

*column* 19 := *column* 19 + *column* 18

|     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | J  |    |    |    |    |
|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| i j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1   |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2   |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3   |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4   |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  | 1  |    |    |    |    |
| 5   |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6   |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7   |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
| 15  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 | 5  | 15 | 16 | 14 | 22 |

*column j'= 18* is such that low(j') = low(j) = 14

So, set

Step 4:

 $column 19 := column 19 + column 18 \longrightarrow low(19) = 5$ 

| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  | 1  |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    | 1  |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 | 5  | 15 | 16 | 14 | 22 |

1

For j = 19, low(19) = 5

Step 4:



*column j'= 11* is such that low(j') = low(j) = 5

So, set

*column* 19 := *column* 19 + *column* 11

|     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |
|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| i j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1   |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2   |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3   |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4   |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5   |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
| 6   |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7   |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
| 15  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 14 | 22 |

*column j'=* 11 is such that low(j') = low(j) = 5

So, set

Step 4:

 $column 19 := column 19 + column 11 \longrightarrow low(19) undefined$ 

|                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 5  |    |    |    |    |
|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
| 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
| 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
| 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
| 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 14 | 22 |

For each j = 19,

Step 4:

there is **no** j' < j such that low(j') = low(j)

So, **increase** *j* by 1

| Ste | p 5:             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 19 | ) < j | i < 1 | 22 |    |
|-----|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|-------|-------|----|----|
|     | $i \backslash j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20    | 21    | 22 | 23 |
|     | 1                |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 2                |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |       |       |    |    |
|     | 3                |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |       |       |    |    |
|     | 4                |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |       |       |    |    |
|     | 5                |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 6                |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1     |       |    |    |
|     | 7                |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |       | 1     |    |    |
|     | 8                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 9                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 11               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 12               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 13               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |       |       | 1  |    |
|     | 14               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |       |       | 1  |    |
|     | 15               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1     |       |    |    |
|     | 16               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       | 1     |    |    |
|     | 17               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    | 1  |
|     | 18               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 19               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 20               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 21               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | 22               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    | 1  |
|     | 23               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |       |       |    |    |
|     | low              |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15    | 16    | 14 | 22 |

For each **19** < *j* < **22**,

there is **no** j' < j such that low(j') = low(j)

So, **increase** *j* by 1

| Ste | p 6:             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | j  |    |
|-----|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| [   | $i \backslash j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1                |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2                |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3                |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4                |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5                |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 6                |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7                |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
|     | 14               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
|     | 15               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 19               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | $\overline{21}$  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | $\overline{22}$  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 23               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low              |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 14 | 22 |

For j = 22, low(22) = 14

| Ste | р6:              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | j' |    |    |    | j  |    |
|-----|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | $i \backslash j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1                |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2                |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3                |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4                |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5                |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 6                |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7                |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
|     | 14               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    | 1  |    |
|     | 15               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 19               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 21               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 22               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 23               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low              |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 14 | 22 |

For j = 22, low(22) = 14

*column j'= 18* is such that low(j') = low(j) = 14

So, set

*column* 22 := *column* 22 + *column* 18

| Ste  | p 6:            |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | j  |    |
|------|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|      | $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|      | 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|      | 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 1 33 | 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    | 1  |    |
|      | 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|      | 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|      | 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
|      | 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|      | 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|      | 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|      | 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 13 | 22 |

*column j'= 18* is such that low(j') = low(j) = 14

So, set

 $column 22 := column 22 + column 18 \longrightarrow low(22) = 13$ 

| - |                  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    | J  |    |
|---|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|
|   | $i \backslash j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18 | 19 | 20 | 21 | 22 | 23 |
| Ì | 1                |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 2                |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |     |    |    |    |    |    |    |
|   | 3                |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |     |    |    |    |    |    |    |
|   | 4                |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1   | 1  |    |    |    | 1  |    |
|   | 5                |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 6                |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |     |    |    | 1  |    |    |    |
|   | 7                |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |     |    |    |    | 1  |    |    |
|   | 8                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 9                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 12               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | - 1 |    |    |    |    | 1  |    |
|   | 13               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1   | -1 |    |    |    | 1  |    |
|   | 14               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     | 1  |    | 1  |    |    |    |
|   | 15               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    | 1  | 1  |    |    |
| } | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    | 1  |    | 1  |
|   | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
| } | 18               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
| } | 19               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 20               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 21               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 22               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | 23               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|   | low              |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13  | 14 |    | 15 | 16 | 13 | 22 |

#### Step 6:

;

| Ste  | p 6:            |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | j' |    |    |    |    | j  |    |
|------|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|      | $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|      | 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|      | 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
| 1 53 | 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    | 1  |    |
|      | 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|      | 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|      | 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    | 1  |    |
| -    | 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|      | 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|      | 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|      | 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|      | 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|      | low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 | 13 | 22 |

*column j'=* 17 is such that low(j') = low(j) = 13

So, set

*column* 22 := *column* 22 + *column* 17

| Ste | р6:              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | j  |    |
|-----|------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | $i \backslash j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1                |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2                |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3                |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4                |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5                |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 6                |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7                |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    |    |    |
|     | 14               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|     | 15               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 19               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 21               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 22               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 23               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low              |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 |    | 22 |

*column j'=* 17 is such that low(j') = low(j) = 13

So, set

 $column 22 := column 22 + column 17 \longrightarrow low(22)$  undefined

| Ste | р 6:            |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | j  |    |
|-----|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    |    |    |
|     | 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|     | 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 23              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 |    | 22 |

For each j = 22,

there is **no** *j*′ < *j* such that *low*(*j*′) = *low*(*j*)

So, **increase** *j* by 1
| Ste | р7:             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | j  |
|-----|-----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | $i \setminus j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|     | 1               |   |   |   |   |   |   |   | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 2               |   |   |   |   |   |   |   |   | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 3               |   |   |   |   |   |   |   |   |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|     | 4               |   |   |   |   |   |   |   | 1 |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|     | 5               |   |   |   |   |   |   |   |   |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 6               |   |   |   |   |   |   |   |   | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 7               |   |   |   |   |   |   |   |   |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 8               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 9               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 10              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 11              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 12              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 13              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  |    |    |    |    |    |    |
|     | 14              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|     | 15              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|     | 16              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|     | 17              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 18              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     | 19              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 20              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 21              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | 22              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|     |                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|     | low             |   |   |   |   |   |   |   | 4 | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 |    | 22 |

For each j = 23,

there is **no** j' < j such that low(j') = low(j) = 22

So, matrix R is reduced

| <br>1  |              |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|--------|--------------|---|---|---|---|------|---|---|----------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|        | i ackslash j | 1 | 2 | 3 | 4 | 5    | 6 | 7 | 8        | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|        | 1            |   |   |   |   |      |   |   | 1        |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|        | 2            |   |   |   |   |      |   |   |          | 1 |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|        | 3            |   |   |   |   |      |   |   |          |   | 1  |    | 1  |    |    |    |    |    |    |    |    |    |    |    |
|        | 4            |   |   |   |   |      |   |   | 1        |   |    | 1  |    |    |    |    |    | 1  | 1  |    |    |    |    |    |
|        | 5            |   |   |   |   |      |   |   |          |   |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |
| ĺ      | 6            |   |   |   |   |      |   |   |          | 1 |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
| Ì      | 7            |   |   |   |   |      |   |   |          |   | 1  |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
| Ì      | 8            |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ì      | 9            |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ì      | 10           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ì      | 11           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|        | 12           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ì      | 13           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    | 1  |    |    |    |    |    |    |
| ľ      | 14           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    | 1  |    |    |    |    |    |
|        | 15           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    | 1  |    |    |    |
|        | 16           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    | 1  |    |    |
|        | 17           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|        | 18           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|        | 19           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|        | 20           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|        | 21           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|        | 22           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  |
|        | 23           |   |   |   |   |      |   |   |          |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| l<br>( | low          |   |   |   |   | <br> |   |   | 4        | 6 | 7  | 5  | 3  |    |    |    |    | 13 | 14 |    | 15 | 16 |    | 22 |
| l      | 100          |   |   |   |   |      |   |   | <b>1</b> |   | •  |    |    |    |    |    |    |    | 11 |    |    | TO |    |    |

Output:

The algorithm returns the above **reduced matrix** *R* 

**Retrieving Persistence Pairs:** 

- For each i = 0, ..., n, if there exists j such that low(j) = i rightarrow [i, j] is a pair for R
- Once every *i* has been parsed, if *i* is an **unpaired** value rightarrow [*i*,  $\infty$ ) is a pair for *R*

From pairs of *R* to the "actual" persistence pairs of  $\Sigma^f$ :

[*i*, *j*] corresponds to [ $f(\sigma_i)$ ,  $f(\sigma_j)$ ] [*i*,  $\infty$ ) corresponds to [ $f(\sigma_i)$ ,  $\infty$ )

(homological degree =  $dim(\sigma_i)$ )

| $H_0$         | i\ i                      | 1 | 0 | 2 | 4 | 5 | G | 7    | 0      | 0 | 10 | 11 | 10 | 19 | 1.4 | 15 | 16 | 17 | 10  | 10 | 20 | 91 | <u>-</u><br>-<br>20 | 02 |
|---------------|---------------------------|---|---|---|---|---|---|------|--------|---|----|----|----|----|-----|----|----|----|-----|----|----|----|---------------------|----|
| [1,∞)         | $\frac{l \setminus j}{1}$ |   |   | 3 | 4 | 0 | 0 | 1    | 0<br>1 | 9 | 10 | 11 | 12 | 15 | 14  | 10 | 10 | 11 | 18  | 19 | 20 | 21 |                     | 23 |
| - / /         | $\frac{1}{2}$             |   |   |   |   |   |   |      | 1      | 1 |    |    | 1  |    |     |    |    |    |     |    |    |    |                     |    |
| [2,∞)         | 3                         |   |   |   |   |   |   |      |        | _ | 1  |    | 1  |    |     |    |    |    |     |    |    |    |                     |    |
| 50 407        | 4                         |   |   |   |   |   |   |      | 1      |   |    | 1  |    |    |     |    |    | 1  | 1   |    |    |    |                     |    |
| [3, 12]       | 5                         |   |   |   |   |   |   |      |        |   |    | 1  |    |    |     |    |    |    |     |    |    |    |                     |    |
| ГЛ 0 <b>1</b> | 6                         |   |   |   |   |   |   |      |        | 1 |    |    |    |    |     |    |    |    |     |    | 1  |    |                     |    |
| [4, 0]        | 7                         |   |   |   |   |   |   |      |        |   | 1  |    |    |    |     |    |    |    |     |    |    | 1  |                     |    |
| [5, 11]       | 8                         |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
|               | 9                         |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
| [6, 9]        | 10                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
|               | 11                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
| [/, 10]       | 13                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    | 1  |     |    |    |    |                     |    |
| [13 17]       | 14                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    | 1   |    |    |    |                     |    |
| [10, 17]      | 15                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    | 1  |    |                     |    |
| [14, 18]      | 16                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    | 1  |                     |    |
|               | 17                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     | 1  |
| [15, 20]      | 18                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     | 1  |
| [16 21]       | 19                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
| [10, 21]      | 20                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
| H             | 21                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     | 1  |
|               | 23                        |   |   |   |   |   |   |      |        |   |    |    |    |    |     |    |    |    |     |    |    |    |                     |    |
| [19,∞)        |                           |   |   |   |   |   |   | <br> | 1      | 6 | 7  | 5  | 2  |    |     |    |    | 12 | 1/  |    | 15 | 16 |                     | 22 |
| [22, 23]      | 100                       |   |   |   |   |   |   |      | 4      | 0 | 1  | 0  | J  |    |     |    |    | 10 | 1.7 |    | 10 | 10 |                     |    |

| H <sub>0</sub> |        | f | 2  | 1.2 | 22     | 11 15 |        | -16 |
|----------------|--------|---|----|-----|--------|-------|--------|-----|
| [1,∞)          | [1,∞)  |   | 5] | 13  | 23     | 14 13 |        | 10  |
| [2,∞)          | [1,∞)  |   |    | 17  | 18     | 19 20 |        | 21  |
| [3, 12]        | [1, 2] |   | 2  | Δ   |        | 5 6   |        | 7   |
| [4, 8]         | [2, 2] |   |    | т   | 11     | 5 0   | 12     | ,   |
| [5, 11]        | [2, 2] |   |    | 8   |        | 9     |        | 10  |
| [6, 9]         | [2, 2] |   | 1  |     |        |       |        |     |
| [7, 10]        | [2, 2] |   | 1  | 1   |        | 2     |        | • 3 |
| [13, 17]       | [3, 3] |   |    |     |        |       |        |     |
| [14, 18]       | [3, 3] |   |    |     |        | N     |        |     |
| [15, 20]       | [3, 3] |   |    | F   | [19, ∝ |       | [3,∞)  |     |
| [16, 21]       | [3, 3] |   |    |     | [22, 2 | 3]    | [3, 3] |     |

Standard algorithm to compute (persistent) homology [Zomorodian, Carlsson 2005]:

- Based on a matrix reduction
- Linear complexity in practical cases
- Quadratic complexity in the worst case

**Several different strategies:** 

#### **Direct approaches**

- Zigzag persistent homology [Milosavljević et al. '05]
- Computation with a twist [Chen, Kerber '11]
- Dual algorithm [De Silvia et al. '11]
- Output-sensitive algorithm [Chen, Kerber '13]
- Multi-field algorithm [Boissonnat, Maria '14]
- Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

#### **Distributed** approaches

- Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
- Constructive Mayer-Vietoris [Boltcheva et al. '11]
- Multicore coreductions [Murty et al. '13]
- Multicore homology [Lewis, Zomorodian '14]
- Persistent homology in chunks [Bauer et al. '14a]
- Distributed persistent computation [Bauer et al. '14b]

#### **Coarsening approaches**

- \* Topological operators and simplifications [Mrozek, Wanner '10; Dlotko, Wagner '14]
- \* Morse-based approaches [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]

#### **Direct approaches:**

- Zigzag persistent homology [Milosavljević et al. '05]
- Computation with a twist [Chen, Kerber '11]
- Dual algorithm [De Silvia et al. '11]
- Output-sensitive algorithm [Chen, Kerber '13]
- Multi-field algorithm [Boissonnat, Maria '14]
- Annotation-based methods [Boissonnat et al. '13; Dey et al. '14]

#### **Distributed approaches:**

- Spectral sequences [Edelsbrunner, Harer '08; Lipsky et al. '11]
- Constructive Mayer-Vietoris [Boltcheva et al. '11]
- Multicore coreductions [Murty et al. '13]
- Multicore homology [Lewis, Zomorodian '14]
- Persistent homology in chunks [Bauer et al. '14a]
- Distributed persistent computation [Bauer et al. '14b]





#### **Coarsening approaches:**

Topological operators and simplifications [Dlotko, Wagner '14]



#### **Coarsening approaches:**

- Topological operators and simplifications [Dlotko, Wagner '14]
  - Acyclic Subcomplexes [Mrozek et al. '08]



#### **Coarsening approaches:**

- Topological operators and simplifications [Dlotko, Wagner '14]
  - Acyclic Subcomplexes [Mrozek et al. '08]
  - Reductions and Coreductions [Mrozek et al. '10]



#### **Coarsening approaches:**

Topological operators and simplifications [Dlotko, Wagner '14]

- Acyclic Subcomplexes [Mrozek et al. '08]
- Reductions and Coreductions [Mrozek et al. '10]
- Edge Contractions [Attali et al. '11]



#### **Coarsening approaches:**

Topological operators and simplifications [Dlotko, Wagner '14]

- Acyclic Subcomplexes [Mrozek et al. '08]
- Reductions and Coreductions [Mrozek et al. '10]
- Edge Contractions [Attali et al. '11]
- \* *Morse-based approaches* [Robins et al. '11; Harker et al. '14; Fugacci et al. '14]



#### Morse Theory [Milnor 1963, Matsumoto 2002]

- Topological tool for efficiently analyzing a shape by studying the behavior of a smooth scalar function *f* defined on it
- Relates the critical points of a smooth scalar function on a shape with their regions of influence
- Analysis of scalar fields requires extracting morphological features (e.g., critical points, integral lines and surfaces)



Let *f* be a real-valued C<sup>2</sup>-function defined on a *d*-dimensional manifold *M* 

- Critical point of *f*: any point on *M* in which the gradient of *f* vanishes
- Critical points can be degenerate or non-degenerate
  - A critical point *p* is degenerate iff the determinant the Hessian matrix *H* of the second order derivatives of function *f* is null

Function *f* is a **Morse function** if and only if *all its critical points are non-degenerate* 

Non-degenerate critical point



Degenerate critical points (monkey saddle and flat saddle)



#### Critical points of a Morse function are *isolated*



Examples of **non-Morse** functions

- A *d*-dimensional Morse function *f* has *d*+1 types of critical points, called *i*-saddles (*i* is the index of the critical point)
  - For *d* = 2: *minima*, *saddles* and *maxima*
  - For *d* = 3: *minima*, 1-saddles, 2- saddles and maxima



An integral line of a smooth function *f* is a maximal path which is everywhere tangent to the gradient vector field of *f*

Integral lines start and end at the critical points of *f*

 Integral lines that connect critical points of consecutive index are called separatrix lines



- Integral lines that converge to a critical point *p* of index *i* form an *i*-cell called the descending cell of *p*
  - Descending cell of a maximum: 2-cell
  - Descending cell of a saddle: 1-cell
  - Descending cell of a minimum: 0-cell

#### **Descending Morse Complex:**

Collection of the descending cells of all critical points of function f



- Integral lines that converge to a critical point *p* of index *i* form an *i*-cell called the descending cell of *p*
  - Descending cell of a maximum: 2-cell
  - Descending cell of a saddle: 1-cell
  - Descending cell of a minimum: 0-cell

#### **Descending Morse Complex:**

Collection of the descending cells of all critical points of function f



- Integral lines that converge to a critical point *p* of index *i* form an *i*-cell called the descending cell of *p*
  - Descending cell of a maximum: 2-cell
  - Descending cell of a saddle: 1-cell
  - Descending cell of a minimum: 0-cell

#### **Descending Morse Complex:**

Collection of the descending cells of all critical points of function f



- Integral lines that converge to a critical point *p* of index *i* form an *i*-cell called the descending cell of *p*
  - Descending cell of a maximum: 2-cell •
  - Descending cell of a saddle: 1-cell
  - Descending cell of a minimum: 0-cell

**Descending Morse Complex:** 

Collection of the descending cells of all critical points of function f

Descending Morse complex

Descending

2-cell

- Integral lines that originate at a critical point *p* of index *i* form a (*d*-*i*)-cell called the ascending cell of *p*
  - Ascending cell of a minimum: 2-cell
  - Ascending cell of a saddle: 1-cell
  - Ascending cell of a maximum: 0-cell

**Ascending Morse Complex:** 

Collection of the ascending cells of all critical points of function f

- Integral lines that originate at a critical point *p* of index *i* form a (*d*-*i*)-cell called the ascending cell of *p*
  - Ascending cell of a minimum: 2-cell
  - Ascending cell of a saddle: 1-cell
  - Ascending cell of a maximum: 0-cell

**Ascending Morse Complex:** 

Collection of the ascending cells of all critical points of function f

- Integral lines that originate at a critical point *p* of index *i* form a (*d*-*i*)-cell called the ascending cell of *p*
  - Ascending cell of a minimum: 2-cell
  - Ascending cell of a saddle: 1-cell
  - Ascending cell of a maximum: 0-cell

**Ascending Morse Complex:** 

Collection of the ascending cells of all critical points of function f



- Integral lines that originate at a critical point *p* of index *i* form a (*d*-*i*)-cell called the ascending cell of *p*
  - Ascending cell of a minimum: 2-cell
  - Ascending cell of a saddle: 1-cell
  - Ascending cell of a maximum: 0-cell

**Ascending Morse Complex:** 

Collection of the ascending cells of all critical points of function f

Ascending Morse complex

Ascending

2-cell

 Function *f* is a Morse-Smale function if its ascending and descending Morse cells intersect transversally

 Morse-Smale (MS) complex is the complex obtained from the mutual intersection of all the ascending and descending cells





In a 2D Morse-Smale complex:

a 2-cell is a quadrilateral bounded by the sequence
*maximum – saddle – minimum – saddle*



- each 1-saddle is connected to exactly two minima
- each 2-saddle is connected to exactly two maxima





#### **Morse Theory:**

Enables to **analyze** the **topology** of a shape by **studying functions** defined on it

Useful for < homological analysis shape segmentation

Various **discretizations** of Morse theory:

- Piecewise linear Morse theory [Banchoff '67]
- Watershed transform [Meyer '94]
- + Discrete Morse theory [Forman '98]

#### **Combinatorial counterpart of Morse theory:**

- Introduced for cell complexes
- Gives a compact homology-equivalent model for a shape
- Derivative free tool for computing segmentations of shapes





#### **Discrete Morse Theory:**

**Gradient** of a function is **simulated by a matching** *V* of the simplices in  $\Sigma$ 

A matching *V* is a collection of pairs ( $\sigma$ , $\tau$ ) such that:

- $\sigma$ ,  $\tau$  are **incident** simplices of dimension *k* and *k*+1
- each simplex of  $\Sigma$  is **in at most one pair** of *V*



**U**1

 $\tau_1$ 

 $\tau_2$ 

 $\sigma_2$ 

#### **Discrete Morse Theory:**

**Gradient** of a function is **simulated by a matching** *V* of the simplices in  $\Sigma$ 

A matching *V* is a collection of pairs ( $\sigma$ , $\tau$ ) such that:

- $\sigma$ ,  $\tau$  are **incident** simplices of dimension *k* and *k*+1
- each simplex of  $\Sigma$  is **in at most one pair** of *V*

*V*-path: Sequence of pairs of *V* 

 $(\sigma_1, \tau_1), (\sigma_2, \tau_2), \ldots, (\sigma_{r-1}, \tau_{r-1}), (\sigma_r, \tau_r)$ 

such that

- $\sigma_{i+1}$  is a *k*-simplex face of the (*k*+1)-simplex  $\tau_i$
- $\sigma_{i+1}$  is different from  $\sigma_i$

A matching *V* is called **Forman gradient** if it is **free of closed** *V***-paths** 

Unpaired simplices of dimension *k* are denoted as **critical simplices of index** *k* 

**Discrete Morse Complex:** 

A chain complex whose:

- *k*-cells → critical simplices of index *k*
- boundary relations are induced by V-paths

#### Theorem.

Given a Forman gradient V defined on a simplicial complex  $\Sigma$ , the associated **discrete Morse complex is homologically equivalent to**  $\Sigma$ 

**Filtered Forman Gradient:** 

Given a filtration *F* of a simplicial complex  $\Sigma$ ,

a Forman gradient *V* is a *filtered Forman gradient of F* if, for each pair  $(\sigma, \tau) \in V$ , there exists *p* such that  $\sigma, \tau \in \Sigma^p$  and  $\sigma, \tau \notin \Sigma^{p-1}$ 

Filtration *F* naturally induces a filtration on the discrete Morse Complex

Theorem.

If *V* is a filtered Forman gradient of *F*, then  $\Sigma$  and the associated discrete Morse complex have **isomorphic persistent homology** 

Let  $\Sigma$  be a simplicial complex of dimension d



Let  $\Sigma$  be a simplicial complex of dimension d



Navigating the *V*-paths, one can retrieve:

- **Descending Morse complex**  $\Gamma_D$ 
  - generated by collection of the *d*-cells representing the regions of influence of the *maxima* of f: k-cells of  $\Gamma_D \leftrightarrow$  critical simplices of index k
Let  $\Sigma$  be a simplicial complex of dimension d



Navigating the *V*-paths, one can retrieve:

- Ascending Morse complex  $\Gamma_A$ 
  - generated by collection of the *d*-cells representing the regions of influence of the *minima* of f: (d-k)-cells of  $\Gamma_A \leftrightarrow$  critical simplices of index k

### Let $\Sigma$ be a simplicial complex of dimension d



Navigating the *V*-paths, one can retrieve:

- + Morse-Smale complex  $\Gamma_{MS}$ 
  - generated by the connected components of the *intersection* of the cells of the descending and ascending Morse complexes

# Morse Theory

**Algorithms for computing Morse complexes:** 

#### **Boundary-based**

- \* Triangle meshes [Takahashi et al. '95; Edelsbrunner et al. '01; Bremer et al. '04]
- Tetrahedral meshes [Edelsbrunner et al. '03]
- Regular grids [Bajaj et al. '98; Schneider '04; Schneider '05]

#### **Region-growing**

- + Adding triangles [Magillo et al. '99; Danovaro et al. '03]
- ◆ Adding vertices [Gyulassy et al. '07]

#### Watershed

- Topographic distance [Meyer et al. '90; Meyer '94]
- Simulated immersion [Vincent et al. '91; Soille '04]
- \* Rain falling simulation [Mangan et al. '99; Stove et al. '00]

#### Forman-based

- Constrained approaches [Cazals et al. '03; King et al. '05; Gyulassy et al. '08; Robins et al. '11; Gyulassy et al. '12]
- Unconstrained approaches [Lewiner et al. '03; Benedetti et al. '14; Harker et al. '14]
- Gradient traversal [Gunther et al. '12; Shivashankarar et al. '12; Weiss et al. '13]



A (filtered) Forman gradient can be build by using the **homology-preserving** operators of **reduction** and **coreduction** 

**Reduction and Coreduction Operators:** 

Let  $\sigma$ , $\tau$  be two incident simplices of dimension *k* and *k*+1, respectively

Pair ( $\sigma$ , $\tau$ ) is called:

**Reduction** if immediate coboundary of  $\sigma = \{\tau\}$ 



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a *reduction pair* ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{\eta\}

\Sigma' \leftarrow \Sigma' \setminus \{\eta\}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a reduction pair ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a *reduction pair* ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a reduction pair ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a reduction pair ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a *reduction pair* ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



**Gradient through Reductions:** 

[Benedetti et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a reduction pair ( $\sigma$ ,  $\tau$ ) do  $V \leftarrow V \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a top simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



#### **Gradient through Coreductions:**

[Harker et al. 2014]

**Input:** Σ simplicial complex **Output:** V gradient vector field, A set of critical simplices

Set  $\Sigma' \leftarrow \Sigma$ ,  $V \leftarrow \emptyset$ ,  $A \leftarrow \emptyset$ 

while  $\Sigma' \neq \emptyset$  do

while  $\Sigma'$  admits a coreduction pair  $(\sigma, \tau)$  do  $\forall \leftarrow \forall \cup \{ (\sigma, \tau) \}$   $\Sigma' \leftarrow \Sigma' \setminus \{ \sigma, \tau \}$ end while

```
Let \eta be a free simplex in \Sigma'

A \leftarrow A \cup \{ \eta \}

\Sigma' \leftarrow \Sigma' \setminus \{ \eta \}
```



Proposition.

Both the algorithms **produce** a **Forman gradient** on  $\Sigma$ 

Which approach is able to compute a Forman gradient with **less critical simplices**?

Proposition.

Both the algorithms **produce** a **Forman gradient** on  $\Sigma$ 

Which approach is able to compute a Forman gradient with **less critical simplices**?

Reduction-based and coreduction-based approaches are equivalent

Theorem.

Any Forman gradient V on  $\Sigma$  produced by a reduction-based algorithm can be obtained through a coreduction-based algorithm; and the converse is also true

- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals



- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals



- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals





- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals





- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals



- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals





- Consider a simplicial complex Σ and run the reduction-based approach on it
- Take the sequence of reduction pairs and top simplex removals operated by the algorithm
- Reverse the order of the sequence: this new sequence represents for Σ a performable sequence of coreduction pairs and free simplex removals





**Interleaved Approach:** 

Another class of approaches **interleaving reductions and coreductions** has been considered

Proposition.

Any interleaved approach **produces** a **Forman gradient** on  $\Sigma$ 

**Interleaved Approach:** 

Another class of approaches **interleaving reductions and coreductions** has been considered

Proposition.

Any interleaved approach  ${\bf produces}$  a  ${\bf Forman}\ {\bf gradient}$  on  $\Sigma$ 

Each interleaved approach has **equivalent** capabilities

#### Theorem.

Any Forman gradient V on  $\Sigma$  produced by an interleaved algorithm can be obtained through a reduction-based algorithm or, equivalently, through a coreduction-based algorithm





**Ulderico Fugacci** 

TU Kaiserslautern, Dept. of Computer Science