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Persistent Homology

Ina Nutshell:
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| Persistent homology allows for
| describing the changes in the shape of an evolving object
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Persistent Homology
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+ Estimation of natural pseudo-distance /\Q

between shapes endowed with a function f

+ Tracking of the connected components of a
shape along its evolution induced by f

~ — — R




Persistent Homology

Delﬁado,

Frosini Edelsbrunner

Incremental Algorithm for Betti Numbers:

+ Introduction of the notion of | 7
filtration

+ De facto computation of
persistence pairs

Image from [Delfinado, Edelsbrunner 1995]



Persistent Homology

Delﬁnado,

Frosini Edelsbrunner

Homology from Finite Approximations:

+ Extrapolation of the homology of a metric
space from a finite point-set approximation

+ Introduction of persistent Betti numbers

Image from [Robins 1999]




Persistent Homology

Delﬁnado,

Frosini Robins B Elislonblnn el
Edelsbrunner Letscher,
Zomorodian
[ ] [ ] i
Topological Persistence: | _ o
[ R — — R —
+ Introduction and algebraic formulation of CEu Sy e o s st
the notion of persistent homology AR | e

+ Description of an algorithm for computing
persistent homology
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Image from [Edelsbrunner et al. 2002]




Persistent Homology
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‘A Twotold Purpose: |

Shape Description
+ Which is the shape of a given data?

Shape Comparison

+ Given two data, do they have the same shape?




Shape Description

+ Which is the shape of a given data?

Persistent homology allows for the retrieval of the “actual” homological information of a data
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Shape Description

+ Which is the shape of a given data?

Persistent homology allows for the retrieval of the “actual” homological information of a data
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Image from [Dey et al. 2008]
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Shape Description

The core information of persistent homology is given by the persistence pairs
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'ﬁPersistence Pairs:

//éiven a filtration XVCXIicC...CcYX™
Z 0 /’ Z 1 /’. ZZ //’.\\ 23 / P \\

/ /
d ¢ ¢ 5 ¢
\ ¢ / \ /

A persistence pair (p, q)is an element in {0, ... , m} x ({0, ... ,m} U {eo}) such thatp < g
representing a homological class that is born at step p and dies at step g

‘h\



Shape Description

The core information of persistent homology is given by the persistence pairs
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A persistence pair (p, q)is an element in {0, ... , m} x ({0, ... ,m} U {eo}) such thatp < g
representing a homological class that is born at step p and dies at step g

‘h\



Shape Description

The core information of persistent homology is given by the persistence pairs
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'ﬁPersistence Pairs:

//éiven a filtration XVCXIicC...CcYX™
X rt / 2 A\ 3 A

/ /
d ¢ ¢ 5 ¢
\ ¢ / \ /

(2, 00 ) essential pair

A persistence pair (p, q)is an element in {0, ... , m} x ({0, ... ,m} U {eo}) such thatp < g
representing a homological class that is born at step p and dies at step g

‘h\



Shape Description

Given a filtered simplicial complex X,

Persistent pairs of X can be visualized through:
+ Barcodes [Carlsson et al. 2005; Ghrist 2008]
+ Persistence diagrams [Edelsbrunner, Harer 2008]

+ Persistence landscapes [Bubenik 2015]

+ Corner points and lines [Frosini, Landi 2001]
+ Half-open intervals [Edelsbrunner et al. 2002]
+ k-triangles [Edelsbrunner et al. 2002]




Shape Description

Given a filtered simplicial complex X,
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Persistent pairs of X can be visualized through:

+ Barcodes [Carlsson et al. 2005; Ghrist 2008] o2 4 6810
+ Persistence diagrams [Edelsbrunner, Harer 2008] = »
+ Persistence landscapes [Bubenik 2015] ,
+ Corner points and lines [Frosini, Landi 2001] T | g:

+ Half-open intervals |[Edelsbrunner et al. 2002] 2

+ k-triangles [Edelsbrunner et al. 2002] I A BRI




Shape Description

| Barcodes:|
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Shape Description

ﬁ Per51stence Dlagramsz }.
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Persistence pairs are represented
as points in R?
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T3
birth




Shape Description

ﬁ Per51stence Dlagramsz }.
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Persistence pairs are represented
as points in R x (R U {es})
31 o
s, g O (23)
S 271 S 0 1
= (0/ oo) (2/ oo)
1 - __________
T3
birth




Shape Description

Both tools visually represent the
lifespan of the homology classes:

+ Barcode: length of the intervals

+ Persistence Diagram: distance from
the diagonal

///"" T — e ————
Barcodes and Persistence Diagrams |
encode equivalent information
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Shape Description

Barcodes and Persistence Diagrams encode equivalent information
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A visualization can be easily
“translated” in the other one:

[p, ql (v, q)
[p, =)




Shape Comparison

+ Do they have the same shape?




Shape Comparison

+ Do they have the same shape?

In Practice?




Shape Comparison

+ Do they have the same shape?

In Practice? In Theory?

v

They are homeomorphic




Shape Comparison

+ Do they have the same shape?




Shape Comparison

+ Do they have the same shape?
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In Practice?




Shape Comparison

+ Do they have the same shape?

—————— e —

In Practice? In Theory?

X

They are not homeomorphic




Shape Comparison

T —— = T —

i

s possible to compare two shapes by comparing their homology groups |
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Shape Comparison
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‘, |
g It is possible to con:lpare two shapes by comparing their hoology gup i
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Differently from homology, persistent homology provides
a notion of “shape” closer to our everyday perception



Shape Comparison
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q It is possible to con:tpare two shapes by comparing the ,
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Differently from homology, persistent homology provides
a notion of “shape” closer to our everyday perception
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Shape Comparlson

| Image from [Rieck 2016]




Shape Comparlson

| Image from [Rieck 2016]

+ Bottleneck distance |




Shape Comparlson

| Image from [Rieck 2016]

+ Bottleneck distance a

+ Wasserstein distance




Shape Comparlson

| Image from [Rieck 2016]
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+ Bottleneck distance f

+ Wasserstein distance

+ Hausdorff distance  \_




Shape Comparlson

| Image from [Rieck 2016]

+ Bottleneck distance

+ Wasserstein distance

+ Hausdorff distance
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From a Point Cloud To a Complex

1

-

| Point Cloud 1i

More and more, data consist of point clouds:
+ finite set of points V in R4 (more generally, embedded in a metric space)

Coordinates

¥\

actual geometric values of attributes
position attached to each point

.~ We represent these unorganized, large-size and high-dimensional data
through simplicial complexes
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From a Point Cloud To a Complex

Various techniques can lead to
+ simplicial complex
+ filtered simplicial complex




From a Point Cloud To a Complex

Various techniques can lead to
+ simplicial complex
+ filtered simplicial complex

ilﬂ Vertex-based Filtration: |

F -V — N induces a filtration on %

|




From a Point Cloud To a Complex

Various techniques can lead to
+ simplicial complex
+ filtered simplicial complex

F :V — N induces a filtration on X
+  F(o) := max{F(v)}
veo

+ Xp:={0 €X|F(o) <p}




From a Point Cloud To a Complex

Various techniques can lead to
+ simplicial complex
+ filtered simplicial complex

|
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From a Point Cloud To a Complex

'Standard Constructions: ’

+ Delaunay triangulations
+ Voronoi diagrams

+ Cech complexes

+ Vietoris-Rips complexes
+ Alpha-shapes

+ Witness complexes

References:
H. Edelsbrunner, Algorithms in Combinatorial Geometry, 1987
H. Edelsbrunner, Geometry and Topology for Mesh Generation, 2001



From a Point Cloud To a Complex
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' Given a finite set of poin

Dimension

IDSIEBEV AR el bIETsl0al Simplicial Complex
. Filtered Simplicial .
Cech complex R, Arbitrary (up to | VI-1)
o Filtered Simplicial .
Vietoris-Rips complex Pl Arbitrary (up to |VI-1)
Alpha-shapes Filtered Simplicial p
Complex
Witness complexes S s Arbitrary (upto |VI-1)
Complex




From a Point Cloud To a Complex

| Two Fundamental Notions: |

e a—
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Nerve Complex

e

Abstract Simplicial Complex

.
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From a Point Cloud To a Complex

Given a finite set V,

e i - R —

o

(

' An abstract simplicial complex 2 on Visa
collection of finite subsets of V such that:

+ ifte)X,oct, thenoceX

\__

_ ___



From a Point Cloud To a Complex

Given a finite set V,

—— ey e R — = S—————— =
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| An abstract simplicial complex X on V is a

collection of finite subsets of V such that:

+ ifte)X,oct, thenoceX

\_

_ —



From a Point Cloud To a Complex

Given a finite set V,

e i - R —

o

(

' An abstract simplicial complex 2 on Visa
collection of finite subsets of V such that:

+ ifte)X,oct, thenoceX

ﬁ Properties: |

+ Any simplicial complex is an abstract simplicial complex on the set of
its vertices

+ Any abstract simplicial complex admits a geometrical realization in R"



From a Point Cloud To a Complex

|Nerve Complex:

i

Given a finite collection S of closed sets in R4,

the nerve of S is the abstract simplicial complex
generated by the non-empty common intersections

Formally,

tN rv




From a Point Cloud To a Complex

| Nerve Complex: :

Given a finite collection S of closed sets in R4,

the nerve of S is the abstract simplicial complex
generated by the non-empty common intersections

Formally, |

tN rv




From a Point Cloud To a Complex

o | =y
u Nerve Theorem: ;‘

]

|
|

Siles
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| Let S be a finite collection of closed, convex sets in R4

'L Then, the nerve of S and the union of the sets in S have the same homotopy
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Same Homotopy Type
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Delaunay Triangulation

Given a finite set of points Vin R?2,

Delaunay Triangulation is a classic notion in Computational Geometry:

+ Producing a “nice” triangulation of V

- free of long and skinny triangles
+ Named after Boris Delaunay for his work on this topic from 1934

+ Originally defined for sets of points in a plane




Delaunay Triangulation

Given a finite set of points Vin R?2,

vex Hull of V: |

m Con

//
‘é

The smallest convex subset CH(V) of R2

il

T

containing all the points of V

Images from [De Floriani 2003]



Delaunay Triangulation

Given a finite set of points Vin R?2,

| Convex Hull of V: |

T

.u”

The smallest convex subset CH(V) of R2
containing all the points of V

il

f[Triangulation of V: |

- T e A — = == = _
7 e

/
| A 2-dimensional simplicial complex (V) such that:
+ The domain of £ is CH(V)

+ The 0-simplices of X are the points in V
__

Images from [De Floriani 2003]



Delaunay Triangulation

Definition: |

) i T R — m— S e S— _

/
|

A Delaunay triangulation is a triangulation Del(V) of V such that:
the circumcircle of any triangle does not contain any point of V in its interior

\_ _




Delaunay Triangulation

' Afinite set of points V in R4 is in general position if ‘
k no d+2 of the points lie on a common (d — 1)-sphere |

—— s — —

Eord=2 .
Vin general

position

no four or more
points are co-circular

*

| Uniqueness:| |If V is in general position, then Del(V) is unique




Delaunay Triangulation

. Voronoi Region: |

T T — -

/
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+ Any Voronoi region is a convex closed subset of R?
+ A Voronoi region is not necessarily bounded

Voronoi Diagram: |

T T T e —— = = = —= = = =——— -
- =

|

of the Voronoi regions of the points of V

\

The Voronoi region of u in V is the set of points of R? for which u is the closest

L | Ry (u) ={z € R*|d(x,u) < d(x,v)

veV}

' The Voronoi diagram is the collection Vor(V) |

" Images from [De Floriani 2003]



Delaunay Triangulation
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|
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QDuallty Property
4/ If Vis in general pos1t10n then
\

the Delaunay triangulation coincides with the nerve of the Voronoi diagram

' Del(V) ={o C V| (] Rv(u) #@}

uEeo

+ Every point u of V corresponds to a Voronoi region Ry (1) °

+ Every triangle t of Del(V) correspond to a vertex in Vor(V)

+ Every edge e=(u,v) in Del(V) corresponds to an edge
shared by the two Voronoi regions Rv(u1) and Ry(v)

Images from [De Floriani 2003]



Delaunay Triangulation

HAlgorithmsz ﬂ

+ Two-step algorithms:
- Computation of an arbitrary triangulation >’

- Optimization of £’ to produce a Delaunay triangulation

+ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
- Modification of an existing Delaunay triangulation while adding
a new vertex at a time

+ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
- Recursive partition of the point set into two halves
- Merging of the computed partial solutions

+ Sweep-line algorithms [Fortune 1989]:
- Step-wise construction of a Delaunay triangulation while moving
a sweep-line in the plane



Delaunay Triangulation

e
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 Watson’s Algorithm: 3

|
I
}

|

L E—— g e — = e _ — e

| A Delaunay triangulation is computed by incrementally
| adding a single point to an existing Delaunay triangulation |

) _ _ _ — —_—— e ———— - — S

Let Vi be a subset of V and let u be a point in V\ V;

Input:
Del(V;), a Delaunay triangulation of V;

Output:
Del(Vii1), a Delaunay triangulation of Vii1:=V; U {u]

7 Images from [De Floriani 2003]



Delaunay Triangulation
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 Watson’s Algorithm: 3

|
I
}

|

/‘ T e ——— — S E— e ——— _ E— —— =

The influence region R, of a point u is the region in the plane formed by the

|

Cunion of the triangles in Del(V;) whose circumcircle contains u in its interior

= = = _—— — —— e E———— - — P =

e ——— S e e

2 ”
| The influence polygon P, of u is the polygon |
formed by the edges of the triangles ‘

of Del(V;) whic

— —e— D e e ————

\_

Images from [De Floriani 2003]



Delaunay Triangulation

e
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 Watson’s Algorithm: 3

|
I
}

|

+ Step 1: deletion of the triangles of Del(V;) forming the influence region R,

+ Step 2: re-triangulation of R, by joining u to the vertices of
the influence polygon P,

- = - -




Delaunay Triangulation

 Watson’s Algorithm: {‘

Letn;=|V;|

+ Detection of a triangle o of Del(V;) containing the new point u: O(n;) in
the worst case

+ Detection of the triangles forming the region of influence through a
breadth-first search: O(I R, |)

+ Re-triangulation of P, is in O(| P, |)

+ Inserting a point u in a triangulation with n;vertices: O(n;) in the worst
case

+ Inserting all points of V: O(n?)in the worst case, where n =1V |



Cech Complex

Given a finite set of points Vin R9, let us consider:



Cech Complex

Given a finite set of points Vin R9, let us consider:

+ B.(r) the closed ball with center u € V and radius r
+ S the collection of these balls



Cech Complex

Given a finite set of points Vin R9, let us consider:

+ B.(r) the closed ball with center u € V and radius r
+ S the collection of these balls

The Cech complex Cech(r) of V of ,
radius r is the nerve of S |

a
{

\_

Cech(r) :=={o C V| () Bu(r) # 0}

h

, In practice, infeasible construction



Vietoris-Rips Complex

Given a finite set of points Vin R4,

(

of all subsets of diameter at most 2r

\__ I

——— — = - S— ———————

Formally, N

VR(r):={c CV|du,v) <2r,Vu,v € o} ':h




Vietoris-Rips Complex

| Properties: J




Vietoris-Rips Complex

|
f
il

!
|

N Properties:

+ Cech(r) C VR(r) C Cech(\/2r)

+ VR(r)is completely determined by its 1-skeleton
- i.e., the graph G of its vertices and its edges

—

|

G




Vietoris-Rips Complex

'}{ Computation: ‘g* [Zomorodian 2010]

— = S —— = L _ ——— _ e ———

Input: finite set of points V in R? and a real positive number r |

/
[
\
!
»!

| Output: the Vietoris-Rips complex VR(r)

E— _——

| Two-step Algorithm:

+ 1-Skeleton Computation:
- Exact (O(IV12)time complexity ) °
- Approximate
» Randomized
» Landmarking

[ ] ® ; >
+ Vietoris-Rips Expansion: N 7
) Re—r
o Inductive L.
o Incremental & -

« Maximal



Vietoris-Rips Complex

'ﬂ Computation:| [Zomorodian 2010]

— e S —— = B —— = e —

/
|

Input: finite set of points V in R4 and a real positive number r |

\Output: the Vietoris-Rips complex VR(r)

=S —eeee—s———

-& Two-step Algorithm:

+ 1-Skeleton Computation:
- Exact (O(IV12)time complexity )
- Approximate
» Randomized
» Landmarking

+ Vietoris-Rips Expansion: R
» Inductive
» Incremental
« Maximal




Vietoris-Rips Complex

| Inductive VR expansion:
Input: the 1-skeleton G=(V, E) of VR(r)
| Output: the k-skeleton 2 of the Vietoris-Rips complex VR(r)

- — = — =

|

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =, e LOWER-NBRS(G, 1)
foreachv €N
>=2u{ocuiv}
return

LOWER-NBRS(G, u)
return{vE€V | u>v, (u,v) € E}




Vietoris-Rips Complex

Inductive VR expansion:
| . sl SIS TR L S

'1; Input: the 1-skeleton G=(V, E) of VR(r)

| Output: the k-skeleton 2 of the Vietoris-Rips complex VR(r)

== — ——— — ==

|

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =), e s LOWER-NBRS(G, 1)
foreachv &N
>=2u{ocuiv}
return >

LOWER-NBRS(G, u)
return{vE€V | u>v, (u,v) € E}




Vietoris-Rips Complex

Inductive VR expansion:
| . sl SIS TR L S

'1; Input: the 1-skeleton G=(V, E) of VR(r)

| Output: the k-skeleton 2 of the Vietoris-Rips complex VR(r)

== — ——— — ==

|

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =), e s LOWER-NBRS(G, 1)
foreachv &N
>=2u{ocuiv}
return >

LOWER-NBRS(G, u)
return{vE€V | u>v, (u,v) € E}




Vietoris-Rips Complex

| Inductive VR expansion: |
!7; Input: the 1-skeleton G=(V, E) of VR(r)
| Output: the k-skeleton X of the Vietoris-Rips complex VR(r)

- == —_——————

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =, e LOWER-NBRS(G, 1)
foreachv €N
>=2u{ocuiv}
return

LOWER-NBRS(G, u)
return{vEV | u>v,(u,v) EE}




Vietoris-Rips Complex

| Inductive VR expansion:
Input: the 1-skeleton G=(V, E) of VR(r)
| Output: the k-skeleton 2 of the Vietoris-Rips complex VR(r)

- — = — =

|

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =, e LOWER-NBRS(G, 1)
foreachv €N
>=2u{ocuiv}
return

LOWER-NBRS(G, u)
return{vE€V | u>v, (u,v) € E}




Vietoris-Rips Complex

| Inductive VR expansion: |
!7; Input: the 1-skeleton G=(V, E) of VR(r)
| Output: the k-skeleton X of the Vietoris-Rips complex VR(r)

- == —_——————

INDUCTIVE-VR(G, k) o
2= ATE |
for =1 to k

foreach i-simplex ¢ € 2

N =, e LOWER-NBRS(G, 1)
foreachv €N
>=2u{ocuiv}
return

LOWER-NBRS(G, u)
return{vEV | u>v,(u,v) EE}




From a Point Cloud To a Complex

, , Bounded : Trivial
Delaunay triangulation : , :
Dimension Homology
“Real” : High Dimension

Homology Large Size



Alpha-shape

Given a finite set of points V in general position of R4, let us consider:
+ Au(r):= Bu(r)n Ry(u)

. intersection of the closed ball of radiusr =
centered in u and the Voronoi region of u |

+ S, the collection of these convex sets

| The Alpha-shape Alpha(r) ot V of '
radius r is the nerve of S ‘

\_
Formally,

Alpha(r) :={oc C V| ﬂ Ay(r) #£ 0}

uco

= = = 5

T E— — S ——

.l( Ay(r) C By(r
kk ()- (7)




Witness Complex

| Motivation: |

e = R ——

'Retrieving the topological information does not require to consider all the input points
\_ ,

+ Landmarks:
selected points

+ Witnesses:
remaining points

Images from [de Silva, Carlsson 2004]



Witness Complex

For each witness w,
my : = the distance of w from the 2nd closest landmark

p—— S— e — e —
///

/

| The witness complex W(r) of radius r is defined by: Ug ~w

+ yisin W(r) if u is a landmark -—

+ (u,0)is in W(r) if there exists a witness w such that ©

max{d(u,w),d(v,w)} < my, + 7

+ the 1-simplex o is in W(r) if all its edges belong to W(r)

Wy (r)is defined by setting mw = 0 for any witness w

W()(T) g VR(T) g W()(Q’l“)

Images from [de Silva, Carlsson 2004]
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Thank you

Ulderico Fugacci

TU Kaiserslautern, Dept. of Computer Science



