"Persistent Homology" Summer School - Rabat

From a Point Cloud
 To a Filtered Simplicial Complex

Ulderico Fugacci

Kaiserslautern University of Technology
Department of Computer Science

Outline

Describing a Shape Chrough Persistence Pairs

Outline

Describing a Shape Chrough Persistence Pairs)

From a Point Cloud to a Filkered Simplicial Complex

Persistent Homology

In a Nutshell:

Image from
[Ghrist 2008]

Persistent homology allows for describing the changes in the shape of an evolving object

Persistent Homology

An Evolving Notion:

1990

Frosini

Size Functions:

+ Estimation of natural pseudo-distance between shapes endowed with a function f
+ Tracking of the connected components of a shape along its evolution induced by f

Image from [Frosini 1992]

Actually, this coincides with persistent homology in degree 0

Persistent Homology

An Evolving Notion:

Incremental Algorithm for Betti Numbers:

- Introduction of the notion of filtration
- De facto computation of persistence pairs

Image from [Delfinado, Edelsbrunner 1995]

Persistent Homology

An Evolving Notion:

+ Extrapolation of the homology of a metric
space from a finite point-set approximation
+ Extrapolation of the homology of a metric
space from a finite point-set approximation
+ Introduction of persistent Betti numbers

Persistent Homology

An Evolving Notion:

Topological Persistence:

+ Introduction and algebraic formulation of the notion of persistent homology
+ Description of an algorithm for computing persistent homology

Image from [Edelsbrunner et al. 2002]

Persistent Homology

A Twofold Purpose:

Shape Description

+ Which is the shape of a given data?

Shape Comparison

+ Given two data, do they have the same shape?

Shape Description

+ Which is the shape of a given data?
Persistent homology allows for the retrieval of the "actual" homological information of a data

Topological Nature of the "Underlying" Shape

Shape Description

- Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data

Image from [Dey et al. 2008]

Shape Description

The core information of persistent homology is given by the persistence pairs

Persistence Pairs:

Given a filtration $\Sigma^{0} \subseteq \Sigma^{1} \subseteq \ldots \subseteq \Sigma^{m}$,

A persistence pair (p, q) is an element in $\{0, \ldots, m\} \times(\{0, \ldots, m\} \cup\{\infty\})$ such that $p<q$ representing a homological class that is born at step p and dies at step q

Shape Description

The core information of persistent homology is given by the persistence pairs

Persistence Pairs:

Given a filtration $\Sigma^{0} \subseteq \Sigma^{1} \subseteq \ldots \subseteq \Sigma^{m}$,

$(2,3)$
A persistence pair (p, q) is an element in $\{0, \ldots, m\} \times(\{0, \ldots, m\} \cup\{\infty\})$ such that $p<q$ representing a homological class that is born at step p and dies at step q

Shape Description

The core information of persistent homology is given by the persistence pairs

Persistence Pairs:

Given a filtration $\Sigma^{0} \subseteq \Sigma^{1} \subseteq \ldots \subseteq \Sigma^{m}$,

A persistence pair (p, q) is an element in $\{0, \ldots, m\} \times(\{0, \ldots, m\} \cup\{\infty\})$ such that $p<q$ representing a homological class that is born at step p and dies at step q

Shape Description

Given a filtered simplicial complex Σ,

Persistent pairs of Σ can be visualized through:

+ Barcodes [Carlsson et al. 2005; Ghrist 2008]
+ Persistence diagrams [Edelsbrunner, Harer 2008]
+ Persistence landscapes [Bubenik 2015]
+ Corner points and lines [Frosini, Landi 2001]
+ Half-open intervals [Edelsbrunner et al. 2002]
+ k-triangles [Edelsbrunner et al. 2002]

Shape Description

Given a filtered simplicial complex Σ,

Persistent pairs of Σ can be visualized through:

+ Barcodes [Carlsson et al. 2005; Ghrist 2008]
+ Persistence diagrams [Edelsbrunner, Harer 2008]
+ Persistence landscapes [Bubenik 2015]
+ Corner points and lines [Frosini, Landi 2001]
+ Half-open intervals [Edelsbrunner et al. 2002]
+ k-triangles [Edelsbrunner et al. 2002]

Shape Description

Barcodes:

Persistence pairs are represented as intervals in R

Shape Description

Persistence Diagrams:

Persistence pairs are represented as points in R^{2}

	$(0,1)$		
$(0, \infty)$		$\quad H_{1}$	$(2,3)$
:---:			
$(2, \infty)$			

${ }_{1}$ Formally, a persistence diagram is a multiset ${ }^{\prime}$

1 + Points are endowed with multiplicity

Shape Description

Persistence Diagrams:

Persistence pairs are represented as points in $R \times(R \cup\{\infty\})$

H_{0}| $(0,1)$ |
| :---: | :---: | :---: |
| $(0, \infty)$ |$\quad H_{1}$| $(2,3)$ |
| :---: |
| |
| $(2, \infty)$ |

${ }_{1}$ Formally, a persistence diagram is a multiset ${ }^{\prime}$

+ Points are endowed with multiplicity

Shape Description

Both tools visually represent the lifespan of the homology classes:

+ Barcode: length of the intervals
+ Persistence Diagram: distance from the diagonal

Barcodes and Persistence Diagrams encode equivalent information

Shape Description

Barcodes and Persistence Diagrams encode equivalent information

Shape Comparison

- Do they have the same shape?

Shape Comparison

+ Do they have the same shape?

In Theory?

Shape Comparison

+ Do they have the same shape?

In Theory?

They are homeomorphic

Shape Comparison

- Do they have the same shape?

Shape Comparison

- Do they have the same shape?

In Practice?

In Theory?

Shape Comparison

+ Do they have the same shape?

In Practice?

In Theory?

They are not homeomorphic

Shape Comparison

It is possible to compare two shapes by comparing their homology groups

Shape Comparison

It is possible to compare two shapes by comparing their homology groups

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

Shape Comparison

It is possible to compare two shapes by comparing their ho

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

Need for a notion of distance between sets of persistence pairs

Shape Comparison

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]
Let \boldsymbol{X}, Ψ be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

Image from [Rieck 2016]

Shape Comparison

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]
Let \boldsymbol{X}, Ψ be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

Image from [Rieck 2016]

+ Bottleneck distance

$$
d_{B}(X, Y)=\inf _{\gamma} \sup _{x}\|x-\gamma(x)\|_{\infty}
$$

Shape Comparison

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]
Let $\boldsymbol{X}, \mathcal{Y}$ be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

Image from [Rieck 2016]

+ Bottleneck distance
- Wasserstein distance

$$
\begin{aligned}
& d_{W}^{q}(X, Y)=\left(\inf _{\gamma} \sum_{x}\|x-\gamma(x)\|_{\infty}^{q}\right)^{1 / q} \\
& d_{W}^{\infty}=d_{B}
\end{aligned}
$$

Shape Comparison

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]
Let \boldsymbol{X}, Ψ be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

Image from [Rieck 2016]

+ Bottleneck distance
- Wasserstein distance
+ Hausdorff distance

$$
\left\{\begin{array}{c}
d_{H}(X, Y)=\max \left\{\sup _{x} \inf _{y}\|x-y\|_{\infty} ; \sup _{y} \inf _{x}\|y-x\|_{\infty}\right\} \\
d_{H} \leq d_{B}
\end{array}\right.
$$

Shape Comparison

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]
Let \boldsymbol{X}, Ψ be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

Image from [Rieck 2016]

+ Bottleneck distance
- Wasserstein distance
- Hausdorff distance

Stability:

Similar shapes have similar persistence diagrams?

Outline

Describing a Shape Chrough Persistence Pairs)

From a Point Cloud to a Filkered Simplicial Complex

From a Point Cloud To a Complex

Point Cloud Datasets:

More and more, data consist of point clouds:

+ finite set of points V in R^{d} (more generally, embedded in a metric space)

Coordinates
> actual geometric position values of attributes attached to each point

We represent these unorganized, large-size and high-dimensional data through simplicial complexes

From a Point Cloud To a Complex

Various techniques can lead to

+ simplicial complex
+ filtered simplicial complex

From a Point Cloud To a Complex

Various techniques can lead to

+ simplicial complex
+ filtered simplicial complex

Vertex-based Filtration:
$F: V \rightarrow \mathbb{N}$ induces a filtration on Σ

From a Point Cloud To a Complex

Various techniques can lead to

+ simplicial complex
+ filtered simplicial complex

Vertex-based Filtration:

$F: V \rightarrow \mathbb{N}$ induces a filtration on Σ

$$
\begin{gathered}
F(\sigma):=\max _{v \in \sigma}\{F(v)\} \\
+\Sigma_{p}:=\{\sigma \in \Sigma \mid F(\sigma) \leq p\}
\end{gathered}
$$

From a Point Cloud To a Complex

Various techniques can lead to

+ simplicial complex
+ filtered simplicial complex

Multi-scale Representation:

From a Point Cloud To a Complex

Standard Constructions:

+ Delaunay triangulations
- Voronoi diagrams
- Čech complexes
+ Vietoris-Rips complexes
+ Alpha-shapes
+ Witness complexes

References:
H. Edelsbrunner, Algorithms in Combinatorial Geometry, 1987
H. Edelsbrunner, Geometry and Topology for Mesh Generation, 2001

From a Point Cloud To a Complex

Given a finite set of points V in R^{d} :

	Output	Dimension
Delaunay triangulation	Simplicial Complex	d
Čech complex	Filtered Simplicial Complex	Arbitrary (up to $\|V\|-1$)
Vietoris-Rips complex	Filtered Simplicial Complex	Arbitrary (up to $\|V\|-1$)
Alpha-shapes	Filtered Simplicial Complex	d
Witness complexes	Filtered Simplicial Complex	Arbitrary (up to $\|V\|-1$)

From a Point Cloud To a Complex

Two Fundamental Notions:

Nerve Complex

Abstract Simplicial Complex

From a Point Cloud To a Complex

Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

+ if $\tau \in \Sigma, \sigma \subseteq \tau$, then $\sigma \in \Sigma$

From a Point Cloud To a Complex

Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

* if $\tau \in \Sigma, \sigma \subseteq \tau$, then $\sigma \in \Sigma$

From a Point Cloud To a Complex

Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

+ if $\tau \in \Sigma, \sigma \subseteq \tau$, then $\sigma \in \Sigma$

Properties:

+ Any simplicial complex is an abstract simplicial complex on the set of its vertices
+ Any abstract simplicial complex admits a geometrical realization in R^{n}

From a Point Cloud To a Complex

Nerve Complex:

Given a finite collection S of closed sets in \mathbf{R}^{d}, the nerve of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\{\sigma \subseteq S \mid \bigcap \sigma \neq \emptyset\}
$$

From a Point Cloud To a Complex

Nerve Complex:

Given a finite collection S of closed sets in $\mathbf{R}^{\mathbf{d}}$, the nerve of S is the abstract simplicial complex generated by the non-empty common intersections

Formally,

$$
\operatorname{Nrv}(S):=\{\sigma \subseteq S \mid \bigcap \sigma \neq \emptyset\}
$$

From a Point Cloud To a Complex

Nerve Theorem:

Let S be a finite collection of closed, convex sets in \mathbf{R}^{d} Then, the nerve of S and the union of the sets in S have the same homotopy type

Same Homotopy Type

Isomorphic Homology

Delaunay Triangulation

Given a finite set of points V in \mathbf{R}^{2},
Delaunay Triangulation is a classic notion in Computational Geometry:

+ Producing a "nice" triangulation of V
- free of long and skinny triangles
+ Named after Boris Delaunay for his work on this topic from 1934
+ Originally defined for sets of points in a plane

Delaunay Triangulation

Given a finite set of points V in $\mathbf{R}^{\mathbf{2}}$,
Convex Hull of V :

The smallest convex subset $\mathrm{CH}(V)$ of \mathbf{R}^{2} containing all the points of V

Delaunay Triangulation

Given a finite set of points V in \mathbf{R}^{2},
Convex Hull of V :

The smallest convex subset $C H(V)$ of \mathbf{R}^{2} containing all the points of V

Triangulation of V :

A 2-dimensional simplicial complex $\Sigma(V)$ such that:

+ The domain of Σ is $\mathrm{CH}(\mathrm{V})$
+ The 0 -simplices of Σ are the points in V

Delaunay Triangulation

Definition:

A Delaunay triangulation is a triangulation $\operatorname{Del}(V)$ of V such that: the circumcircle of any triangle does not contain any point of V in its interior

Delaunay Triangulation

A finite set of points V in $\mathbf{R}^{\mathbf{d}}$ is in general position if no $d+2$ of the points lie on a common (d-1)-sphere

For $\mathrm{d}=2$,
V in general
position

no four or more points are co-circular

Uniqueness: If V is in general position, then $\operatorname{Del}(V)$ is unique

Delaunay Triangulation

Voronoi Region:

The Voronoi region of u in V is the set of points of \mathbf{R}^{2} for which u is the closest

$$
R_{V}(u)=\left\{x \in \mathbb{R}^{d} \mid d(x, u) \leq d(x, v), v \in V\right\}
$$

- Any Voronoi region is a convex closed subset of \mathbf{R}^{2} - A Voronoi region is not necessarily bounded

Voronoi Diagram:

The Voronoi diagram is the collection $\operatorname{Vor}(V)$ of the Voronoi regions of the points of V

Images from [De Floriani 2003]

Delaunay Triangulation

Duality Property:

If V is in general position, then
the Delaunay triangulation coincides with the nerve of the Voronoi diagram

$$
\operatorname{Del}(V)=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} R_{V}(u) \neq \emptyset\right\}
$$

+ Every point u of V corresponds to a Voronoi region $R_{V}(u)$
* Every triangle t of $\operatorname{Del}(V)$ correspond to a vertex in $\operatorname{Vor}(V)$
* Every edge $e=(u, v)$ in $\operatorname{Del}(V)$ corresponds to an edge shared by the two Voronoi regions $R_{V}(u)$ and $R_{V}(v)$

Delaunay Triangulation

Algorithms:

+ Two-step algorithms:
- Computation of an arbitrary triangulation Σ^{\prime}
- Optimization of Σ^{\prime} to produce a Delaunay triangulation
+ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
- Modification of an existing Delaunay triangulation while adding a new vertex at a time
+ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
- Recursive partition of the point set into two halves
- Merging of the computed partial solutions
+ Sweep-line algorithms [Fortune 1989]:
- Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

Delaunay Triangulation

Watson's Algorithm:

A Delaunay triangulation is computed by incrementally adding a single point to an existing Delaunay triangulation

Let V_{i} be a subset of V and let u be a point in $V \backslash V_{i}$

Input:

$\operatorname{Del}\left(V_{i}\right)$, a Delaunay triangulation of V_{i}

Output:

$\operatorname{Del}\left(V_{i+1}\right)$, a Delaunay triangulation of $V_{i+1}:=V_{i} \cup\{u\}$

Images from [De Floriani 2003]

Delaunay Triangulation

Watson's Algorithm:

The influence region R_{u} of a point u is the region in the plane formed by the union of the triangles in $\operatorname{Del}\left(V_{i}\right)$ whose circumcircle contains u in its interior

The influence polygon P_{u} of u is the polygon formed by the edges of the triangles of $\operatorname{Del}\left(V_{i}\right)$ which bound R_{u}

Images from [De Floriani 2003]

Delaunay Triangulation

Watson's Algorithm:

+ Step 1: deletion of the triangles of $\operatorname{Del}\left(V_{i}\right)$ forming the influence region R_{u}
+ Step 2: re-triangulation of R_{u} by joining u to the vertices of the influence polygon P_{u}

Delaunay Triangulation

Watson's Algorithm:

Let $n_{i}=\left|V_{i}\right|$

+ Detection of a triangle σ of $\operatorname{Del}\left(V_{i}\right)$ containing the new point $u: O\left(n_{i}\right)$ in the worst case
+ Detection of the triangles forming the region of influence through a breadth-first search: $\mathrm{O}\left(\left|R_{u}\right|\right)$
+ Re-triangulation of P_{u} is in $\mathrm{O}\left(\left|P_{u}\right|\right)$
+ Inserting a point u in a triangulation with n_{i} vertices: $\mathbf{O}\left(n_{i}\right)$ in the worst case
+ Inserting all points of $\mathrm{V}: \boldsymbol{O}\left(n^{2}\right)$ in the worst case, where $n=|V|$

Čech Complex

Given a finite set of points V in \mathbf{R}^{d}, let us consider:

Čech Complex

Given a finite set of points V in \mathbf{R}^{d}, let us consider:

- $\boldsymbol{B}_{u}(r)$, the closed ball with center $u \in V$ and radius r
+ S, the collection of these balls

Čech Complex

Given a finite set of points V in \mathbf{R}^{d}, let us consider:

- $\boldsymbol{B}_{u}(r)$, the closed ball with center $u \in V$ and radius r
+ S, the collection of these balls

The Čech complex Čech (r) of V of radius r is the nerve of S

$$
\check{C} e c h(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} B_{u}(r) \neq \emptyset\right\}
$$

In practice, infeasible construction

Vietoris-Rips Complex

Given a finite set of points V in \mathbf{R}^{d},
The Vietoris-Rips complex $V R(r)$ of V and r is the abstract simplicial complex consisting of all subsets of diameter at most $2 r$

Formally,

$$
V R(r):=\{\sigma \subseteq V \mid d(u, v) \leq 2 r, \forall u, v \in \sigma\}
$$

Vietoris-Rips Complex

Properties:

+ $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$

$\check{C} e c h(r)$
$V R(r)$
$\check{C} e c h(\sqrt{2} r)$

Vietoris-Rips Complex

Properties:

+ $\check{C} e c h(r) \subseteq V R(r) \subseteq \check{C} e c h(\sqrt{2} r)$
+ VR(r) is completely determined by its 1-skeleton
- i.e., the graph G of its vertices and its edges

Vietoris-Rips Complex

Computation: [Zomorodian 2010]

Input: finite set of points V in R^{d} and a real positive number r
Output: the Vietoris-Rips complex $V R(r)$

Two-step Algorithm:

+ 1-Skeleton Computation:
- Exact ($\mathrm{O}\left(|V|^{2}\right)$ time complexity)
- Approximate
- Randomized
- Landmarking
+ Vietoris-Rips Expansion:
- Inductive
- Incremental
- Maximal

Vietoris-Rips Complex

Computation: [Zomorodian 2010]

Input: finite set of points V in R^{d} and a real positive number r
Output: the Vietoris-Rips complex $V R(r)$

Two-step Algorithm:

+ 1-Skeleton Computation:
- Exact ($\mathrm{O}\left(|V|^{2}\right)$ time complexity)
- Approximate
- Randomized
- Landmarking
+ Vietoris-Rips Expansion:
- Inductive
- Incremental

- Maximal

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)

$$
\begin{aligned}
& \Sigma=V \cup E \\
& \text { for } i=1 \text { to } k \\
& \text { foreach } i \text {-simplex } \sigma \in \Sigma \\
& \quad N=\bigcap_{u \in \sigma \operatorname{LOWER-NBRS}(G, u)} \\
& \text { foreach } v \in N \\
& \quad \Sigma=\Sigma \cup\{\sigma \cup\{v\}\} \\
& \text { return } \Sigma \\
& \text { LOWER-NBRS }(G, u) \\
& \text { return }\{v \in V \mid u>v,(u, v) \in E\}
\end{aligned}
$$

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)
$\Sigma=V \cup E$
for $i=1$ to k
foreach i-simplex $\sigma \in \Sigma$
$N=\bigcap_{u \in \sigma} \operatorname{LOWER-NBRS}(G, u)$
foreach $v \in N$
$\Sigma=\Sigma \cup\{\sigma \cup\{v\}\}$
return Σ
LOWER-NBRS (G, u)
return $\{v \in V \mid u>v,(u, v) \in E\}$

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)
$\Sigma=V \cup E$
for $i=1$ to k
foreach i-simplex $\sigma \in \Sigma$
$N=\bigcap_{u \in \sigma} \operatorname{LOWER-NBRS}(G, u)$
foreach $v \in N$
$\Sigma=\Sigma \cup\{\sigma \cup\{v\}\}$
return Σ
LOWER-NBRS (G, u)
return $\{v \in V \mid u>v,(u, v) \in E\}$

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)
$\Sigma=V \cup E$
for $i=1$ to k
foreach i-simplex $\sigma \in \Sigma$
$N=\bigcap_{u \in \sigma} \operatorname{LOWER}-\operatorname{NBRS}(G, u)$
foreach $v \in N$
$\Sigma=\Sigma \cup\{\sigma \cup\{v\}\}$
return Σ
LOWER-NBRS (G, u)
return $\{v \in V \mid u>v,(u, v) \in E\}$

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)
$\Sigma=V \cup E$
for $i=1$ to k
foreach i-simplex $\sigma \in \Sigma$
$N=\bigcap_{u \in \sigma} \operatorname{LOWER-NBRS}(G, u)$
foreach $v \in N$
$\Sigma=\Sigma \cup\{\sigma \cup\{v\}\}$
return Σ
LOWER-NBRS (G, u)
return $\{v \in V \mid u>v,(u, v) \in E\}$

Vietoris-Rips Complex

Inductive VR expansion:

Input: the 1-skeleton $G=(V, E)$ of $V R(r)$
Output: the k-skeleton Σ of the Vietoris-Rips complex $V R(r)$
INDUCTIVE-VR($\boldsymbol{G}, \boldsymbol{k}$)
$\Sigma=V \cup E$
for $i=1$ to k
foreach i-simplex $\sigma \in \Sigma$
$N=\bigcap_{u \in \sigma} \operatorname{LOWER-NBRS}(G, u)$
foreach $v \in N$
$\Sigma=\Sigma \cup\{\sigma \cup\{v\}\}$
return Σ
LOWER-NBRS (G, u)
return $\{v \in V \mid u>v,(u, v) \in E\}$

From a Point Cloud To a Complex

Alpha-shape

Given a finite set of points V in general position of $\mathbf{R}^{\mathbf{d}}$, let us consider:
$+A_{u}(r):=B_{u}(r) \cap R_{V}(u)$

- intersection of the closed ball of radius r centered in u and the Voronoi region of u
+ S, the collection of these convex sets

The Alpha-shape Alpha(r) of V of radius r is the nerve of S

Formally,

$$
\operatorname{Alpha}(r):=\left\{\sigma \subseteq V \mid \bigcap_{u \in \sigma} A_{u}(r) \neq \emptyset\right\}
$$

$$
A_{u}(r) \subseteq B_{u}(r) \Longleftrightarrow A l p h a(r) \subseteq \check{C} e c h(r)
$$

Witness Complex

Motivation:

Retrieving the topological information does not require to consider all the input points

- Landmarks: selected points
- Witnesses: remaining points

Witness Complex

For each witness w, $m_{w}:=$ the distance of w from the $2 n d$ closest landmark

The witness complex $W(r)$ of radius r is defined by:

+ u is in $W(r)$ if u is a landmark
$+(u, v)$ is in $W(r)$ if there exists a witness w such that

$$
\max \{d(u, w), d(v, w)\} \leq m_{w}+r
$$

* the i-simplex σ is in $W(r)$ if all its edges belong to $W(r)$
$W_{0}(r)$ is defined by setting $\mathrm{m}_{\mathrm{w}}=0$ for any witness w

$$
W_{0}(r) \subseteq V R(r) \subseteq W_{0}(2 r)
$$

Outline

Describing a Shape Chrough Persistence Pairs)

From a Point Cloud to a Filkered Simplicial Complex

Thank you

Ulderico Fugacci
TU Kaiserslautern, Dept. of Computer Science

