"Persistent Homology" Summer School - Rabat

From a Point Cloud To a Filtered Simplicial Complex

Ulderico Fugacci

Kaiserslautern University of Technology
Department of Computer Science

Outline

Describing a Shape through Persistence Pairs

Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

In a Nutshell:

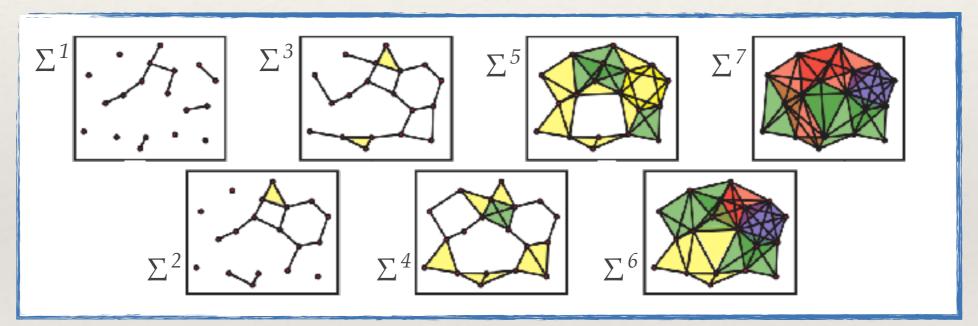


Image from [Ghrist 2008]

Persistent homology allows for **describing the changes in the shape** of an evolving object

An Evolving Notion:

Size Functions:

- * Estimation of natural pseudo-distance between shapes endowed with a function *f*
- Tracking of the *connected components* of a shape along its evolution induced by f

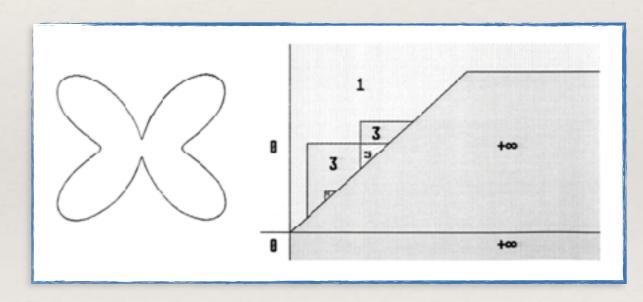


Image from [Frosini 1992]

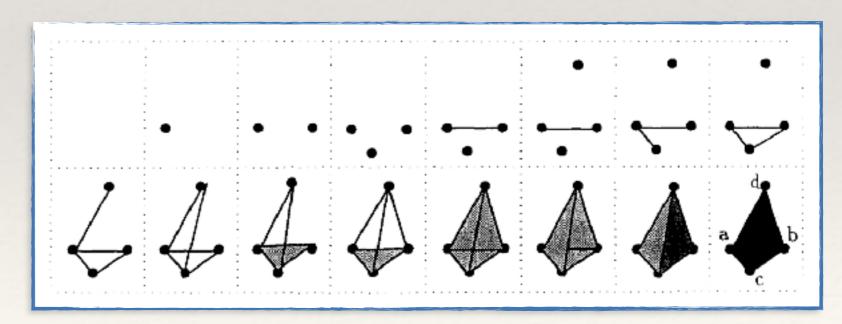
Actually, this coincides with *persistent homology in degree 0*

An Evolving Notion:

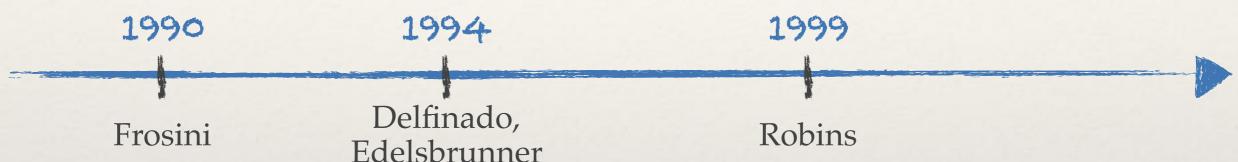


Incremental Algorithm for Betti Numbers:

- Introduction of the notion of filtration
- De facto computation of persistence pairs



An Evolving Notion:



Homology from Finite Approximations:

- * Extrapolation of the homology of a metric space from a finite point-set approximation
- Introduction of persistent Betti numbers

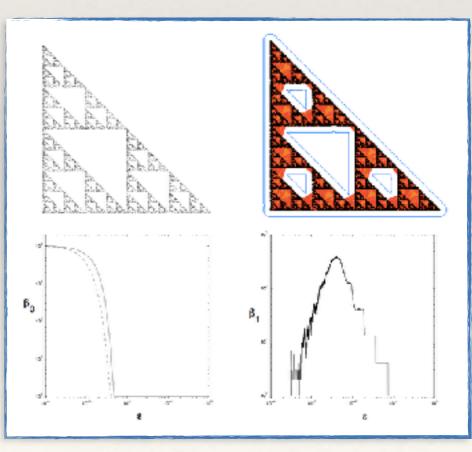
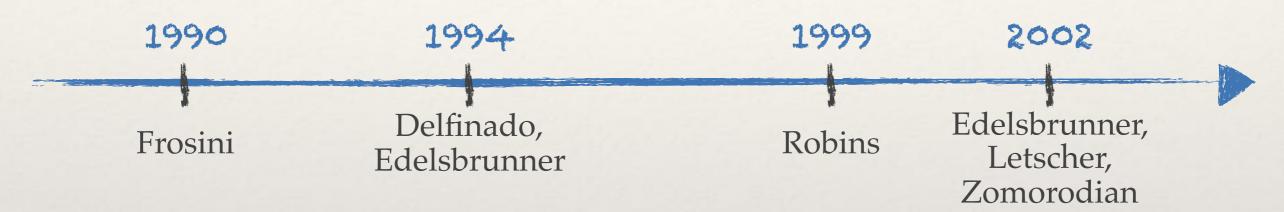


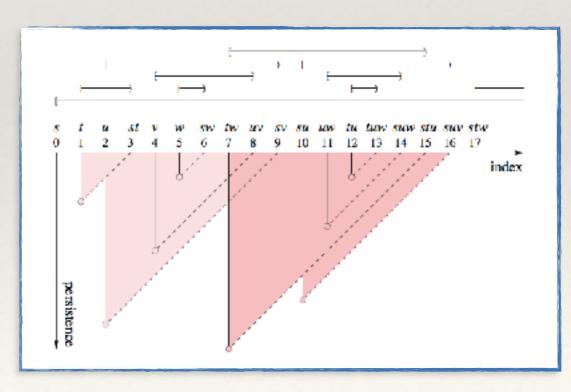
Image from [Robins 1999]

An Evolving Notion:



Topological Persistence:

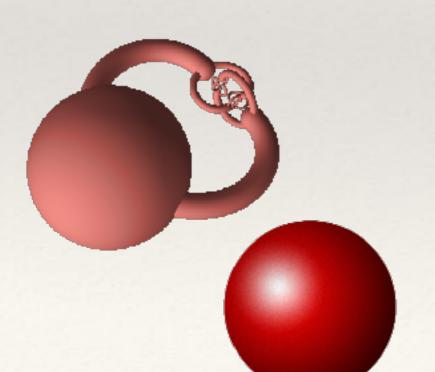
- Introduction and algebraic formulation of the notion of *persistent homology*
- Description of an algorithm for computing persistent homology



A Twofold Purpose:

Shape Description

* Which is the shape of a given data?

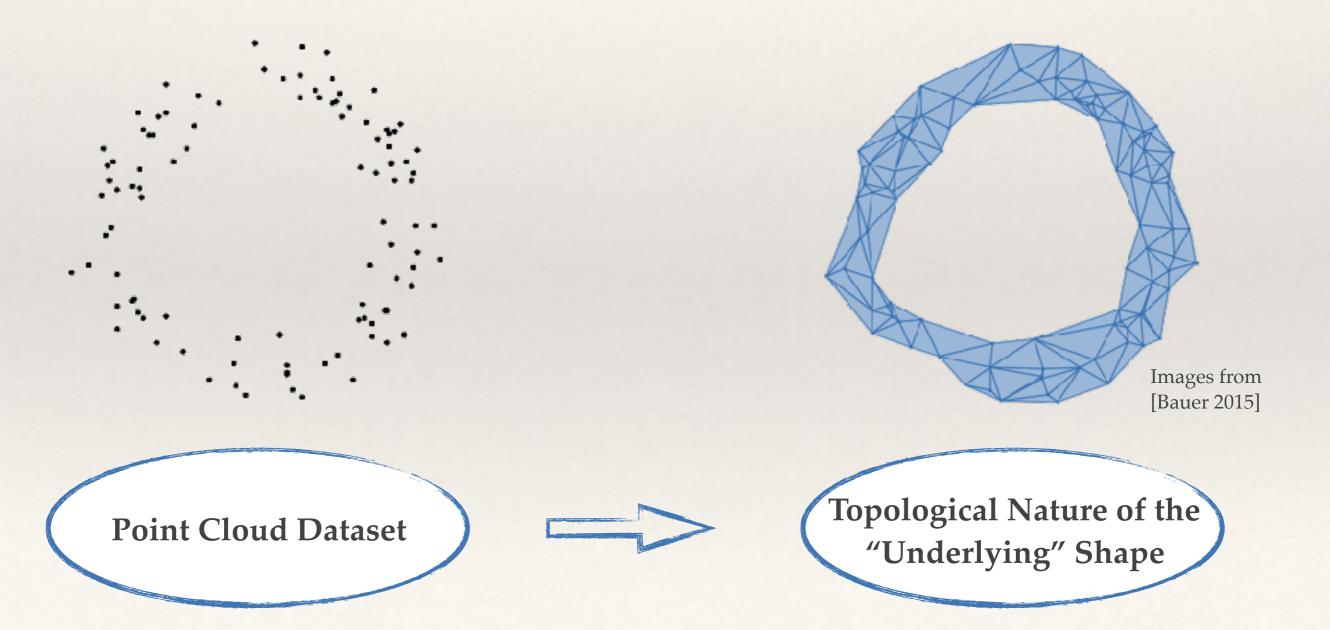


Shape Comparison

• Given two data, do they have the same shape?

* Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data



• Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data

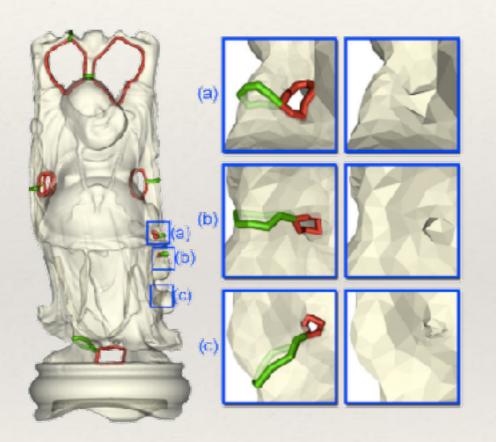


Image from [Dey et al. 2008]

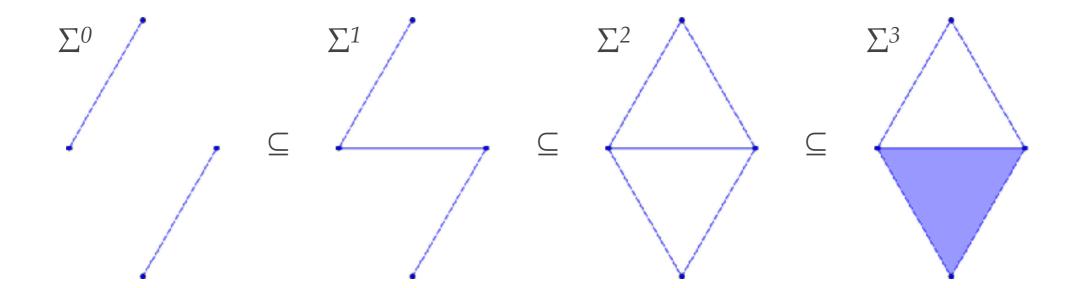
Noisy Dataset

Relevant Homological Information

The *core information* of persistent homology is given by the *persistence pairs*

Persistence Pairs:

Given a filtration $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$,

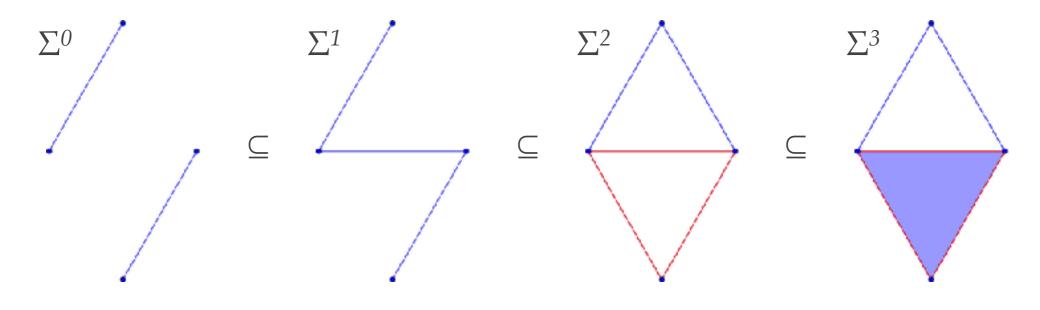


A **persistence pair** (p, q) is an element in $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$ such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

The *core information* of persistent homology is given by the *persistence pairs*

Persistence Pairs:

Given a filtration $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$,



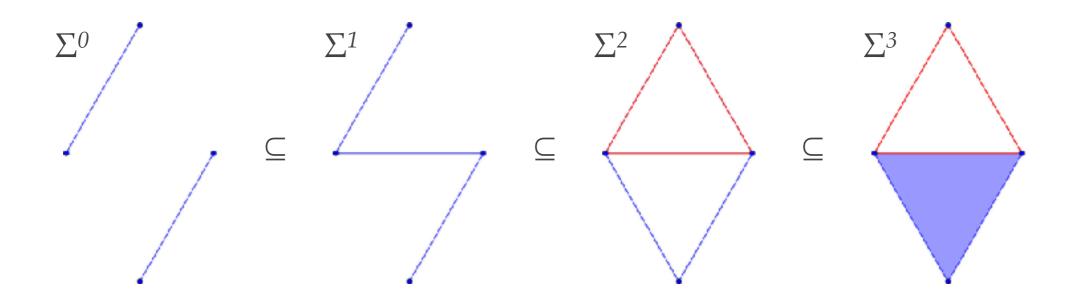
(2, 3)

A **persistence pair** (p, q) is an element in $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$ such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

The *core information* of persistent homology is given by the *persistence pairs*

Persistence Pairs:

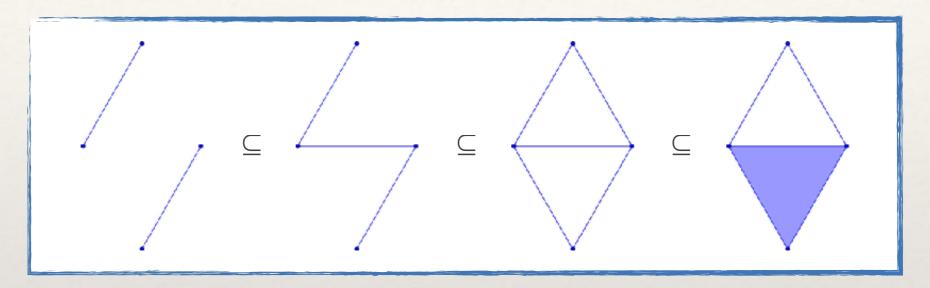
Given a filtration $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$,



A **persistence pair** (p, q) is an element in $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$ such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

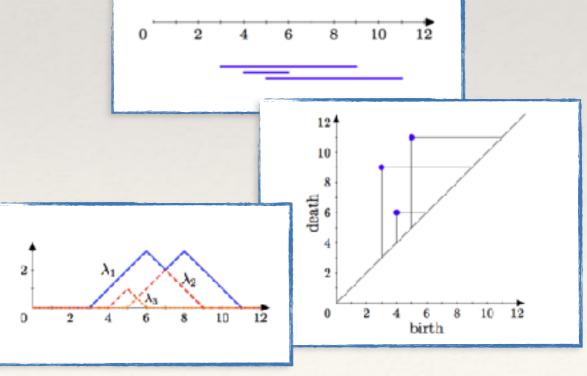
 $(2, \infty)$ essential pair

Given a filtered simplicial complex Σ ,

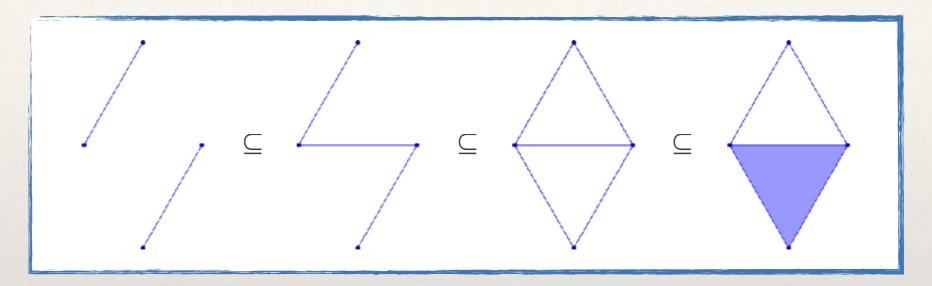


Persistent pairs of Σ can be visualized through:

- * *Barcodes* [Carlsson et al. 2005; Ghrist 2008]
- Persistence diagrams [Edelsbrunner, Harer 2008]
- Persistence landscapes [Bubenik 2015]
- Corner points and lines [Frosini, Landi 2001]
- * *Half-open intervals* [Edelsbrunner et al. 2002]
- * *k-triangles* [Edelsbrunner et al. 2002]

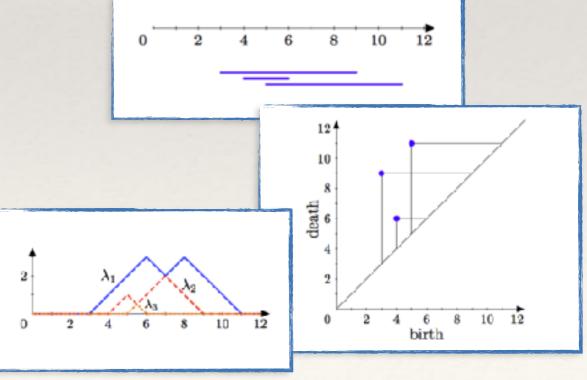


Given a filtered simplicial complex Σ ,

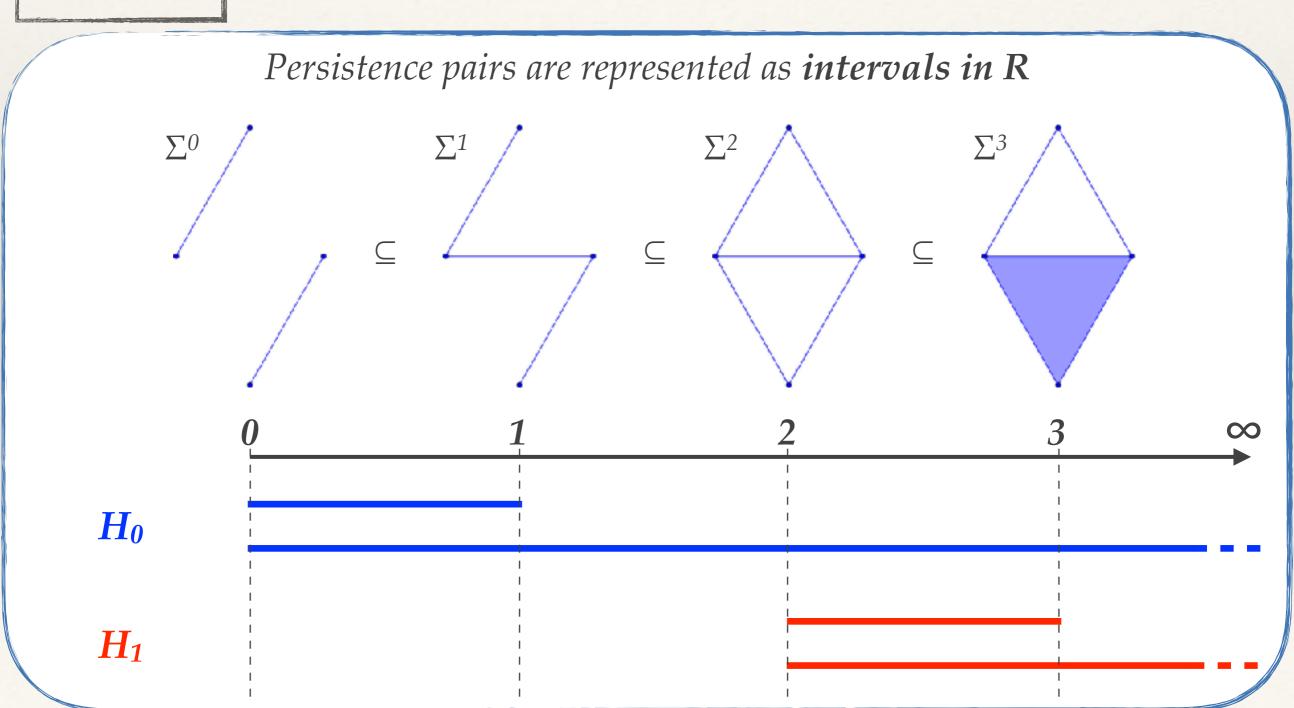


Persistent pairs of Σ can be visualized through:

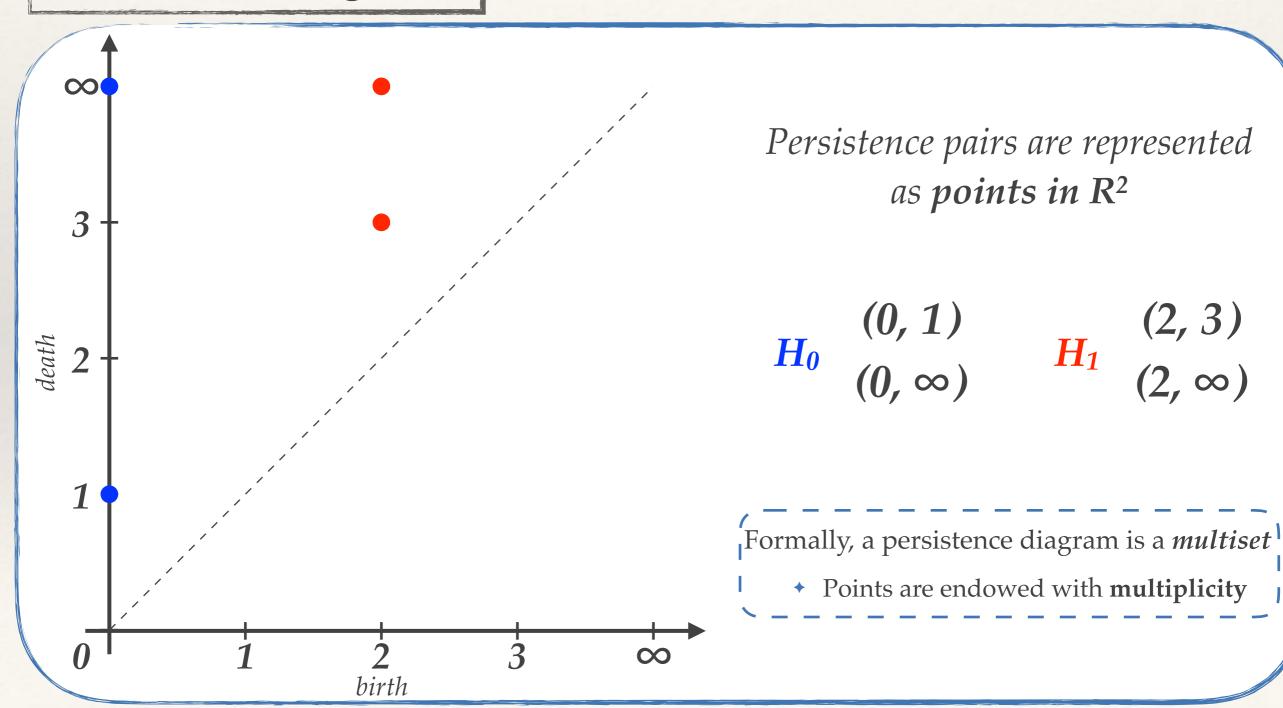
- ◆ Barcodes [Carlsson et al. 2005; Ghrist 2008]
- Persistence diagrams [Edelsbrunner, Harer 2008]
- Persistence landscapes [Bubenik 2015]
- * Corner points and lines [Frosini, Landi 2001]
- * *Half-open intervals* [Edelsbrunner et al. 2002]
- * *k-triangles* [Edelsbrunner et al. 2002]



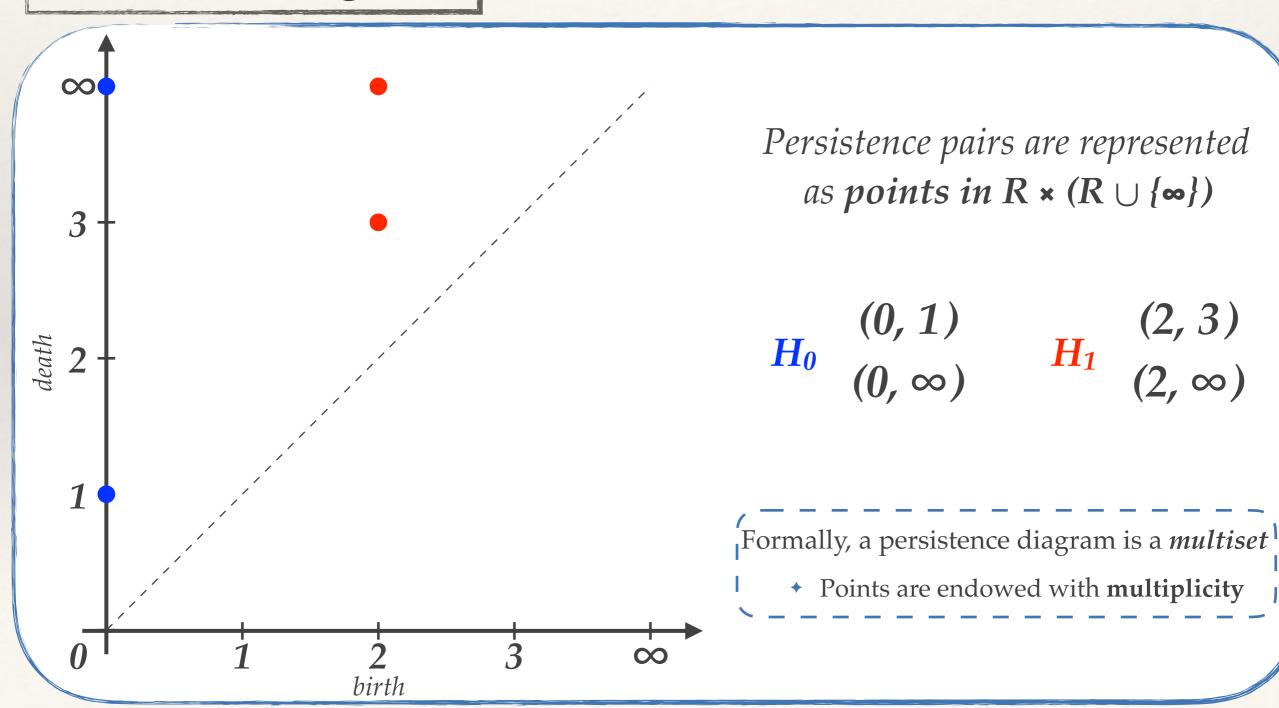
Barcodes:



Persistence Diagrams:



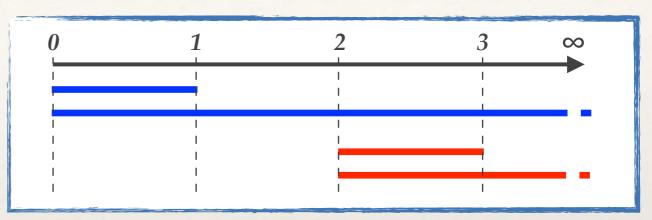
Persistence Diagrams:

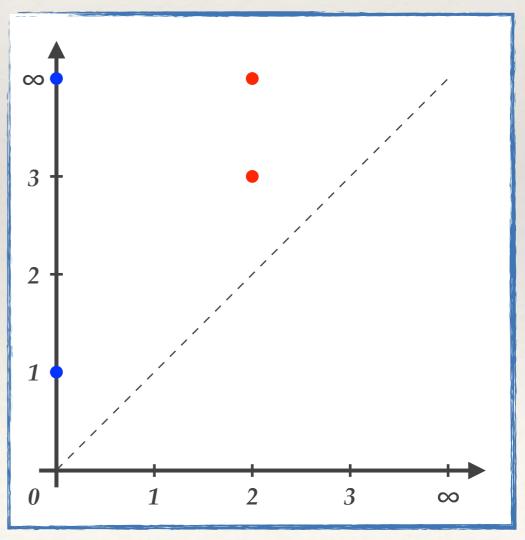


Both tools *visually represent* the *lifespan* of the homology classes:

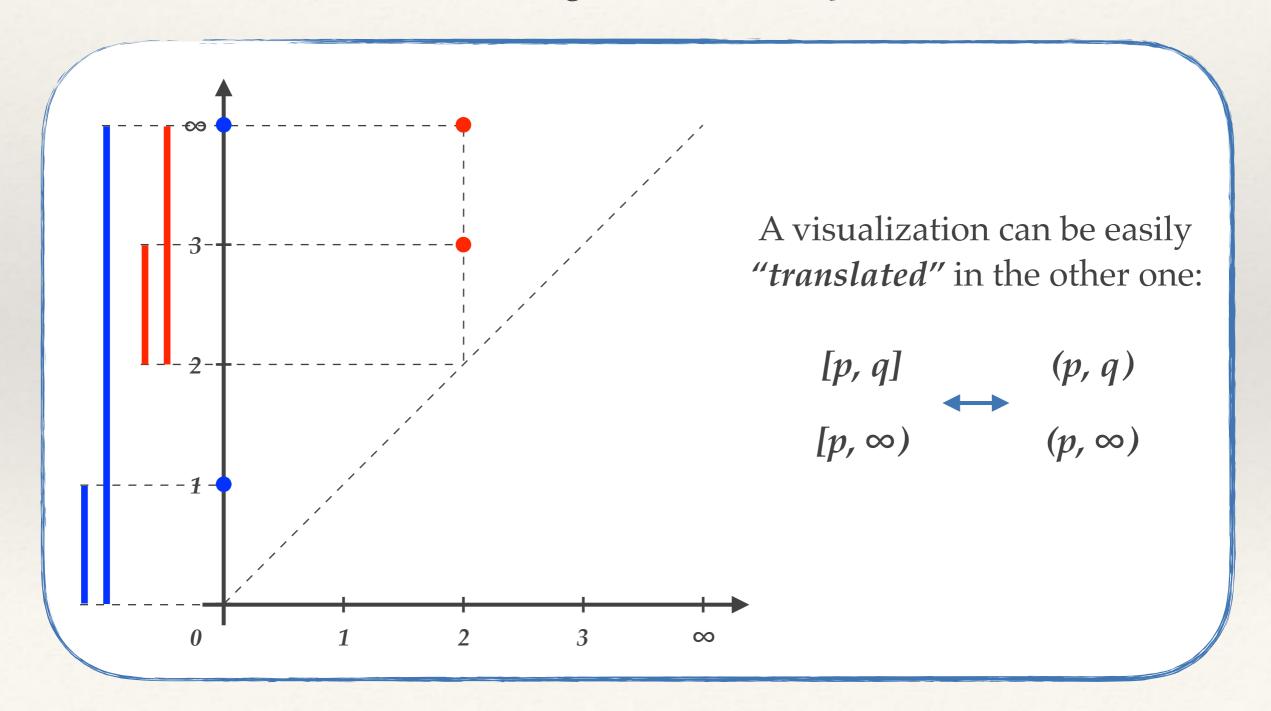
- * Barcode: length of the intervals
- * Persistence Diagram: distance from the diagonal

Barcodes and Persistence Diagrams encode *equivalent* information

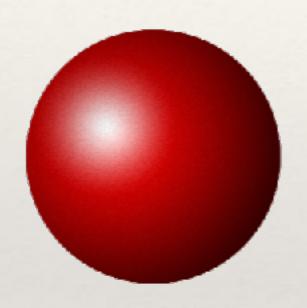


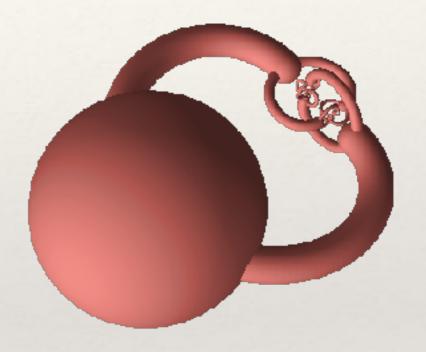


Barcodes and Persistence Diagrams encode equivalent information

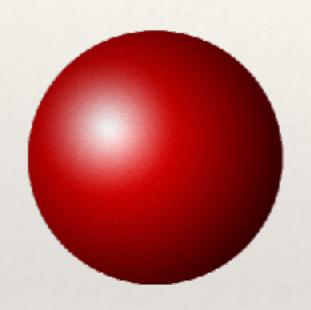


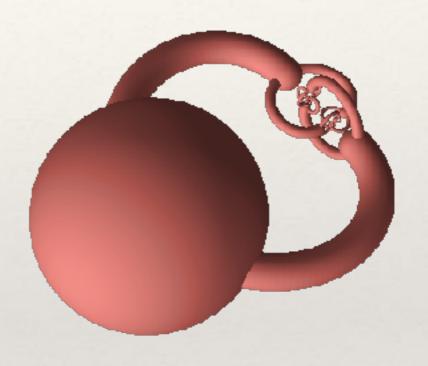
* Do they have the same shape?





* Do they have the same shape?

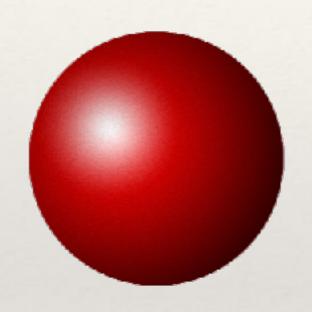


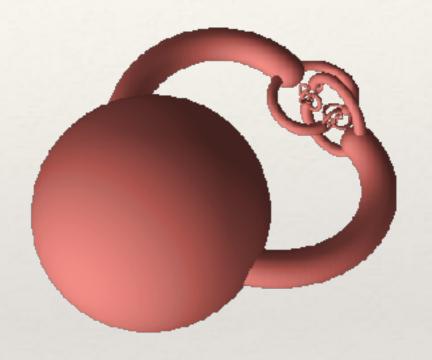


In Practice?

In Theory?

* Do they have the same shape?





In Practice?

In Theory?

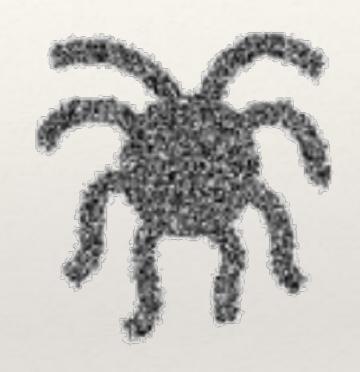
They are homeomorphic

* Do they have the same shape?





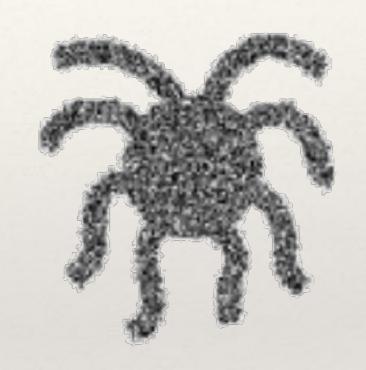
* Do they have the same shape?



In Practice?

In Theory?

* Do they have the same shape?



In Practice?

In Theory?

They are **not homeomorphic**

It is possible to *compare two shapes* by comparing their *homology groups*

It is possible to *compare two shapes* by comparing their *homology groups*

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to *compare two shapes* by comparing their *howere two shapes* by comparing the compar

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

Need for a notion of *distance* between sets of persistence pairs

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

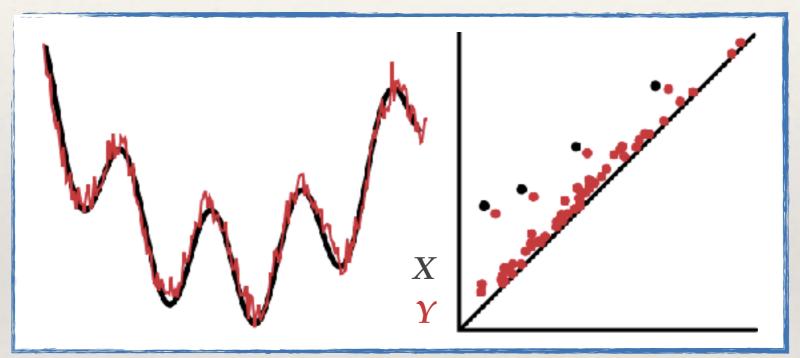


Image from [Rieck 2016]

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

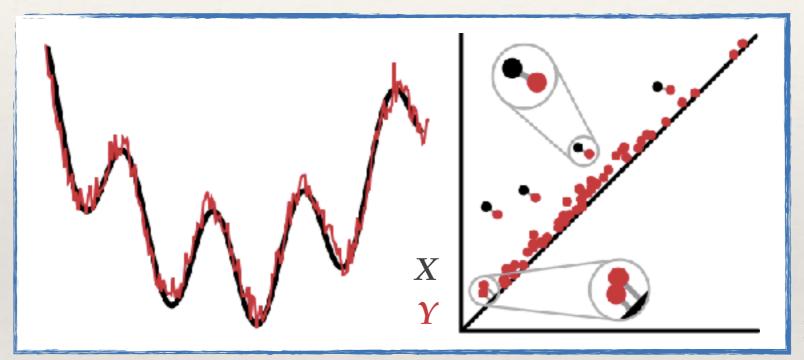


Image from [Rieck 2016]

→ Bottleneck distance

$$d_B(X,Y) = \inf_{\gamma} \sup_{x} ||x - \gamma(x)||_{\infty}$$

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

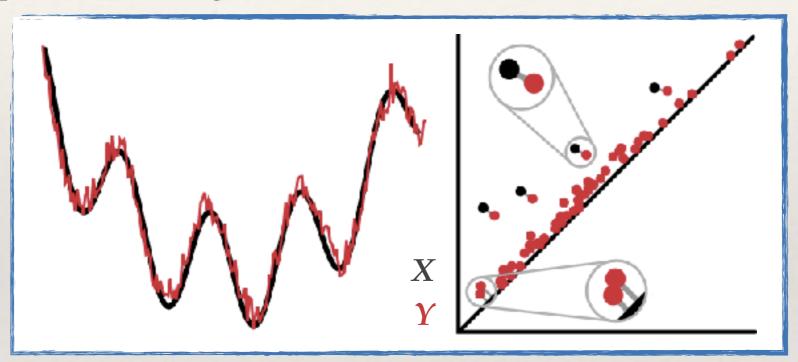


Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance

$$d_W^q(X, Y) = \left(\inf_{\gamma} \sum_{x} ||x - \gamma(x)||_{\infty}^q\right)^{1/q}$$
 $d_W^{\infty} = d_B$

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

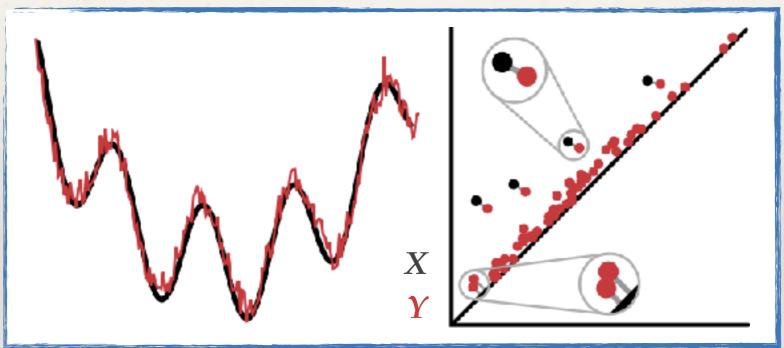


Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance
- Hausdorff distance

$$egin{aligned} d_H(X,Y) &= \max\left\{\sup_x \inf_y \|x-y\|_\infty, \sup_y \inf_x \|y-x\|_\infty
ight\} \ d_H &\leq d_B \end{aligned}$$

Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

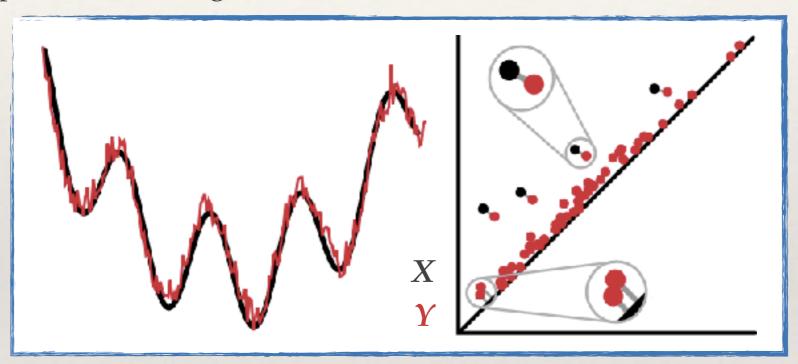


Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance
- → Hausdorff distance

Stability:

Similar shapes have similar persistence diagrams?

Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

Point Cloud Datasets:

More and more, data consist of **point clouds**:

• finite set of points V in \mathbb{R}^d (more generally, embedded in a metric space)

Coordinates

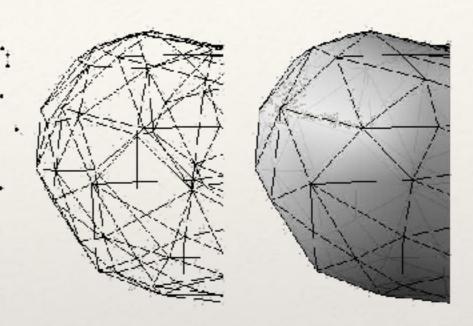
actual geometric position

values of attributes attached to each point

We represent these *unorganized*, *large-size* and *high-dimensional data* through simplicial complexes

Various techniques can lead to

- simplicial complex
- filtered simplicial complex

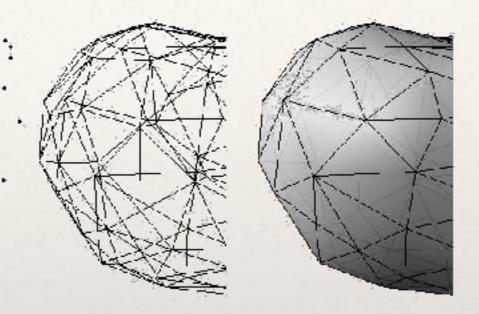


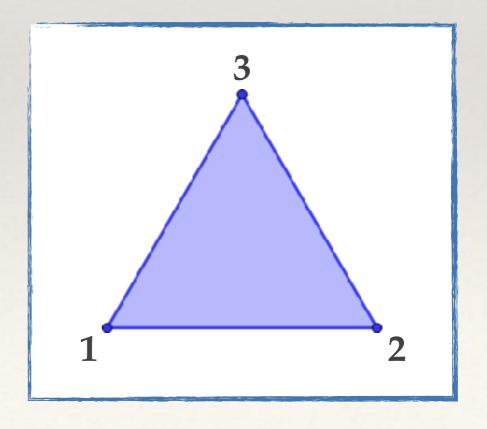
Various techniques can lead to

- simplicial complex
- + filtered simplicial complex

Vertex-based Filtration:

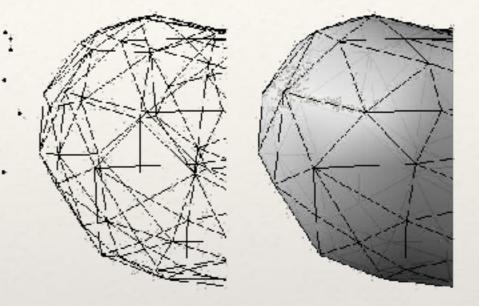
 $F: V \to \mathbb{N}$ induces a filtration on Σ





Various techniques can lead to

- simplicial complex
- filtered simplicial complex

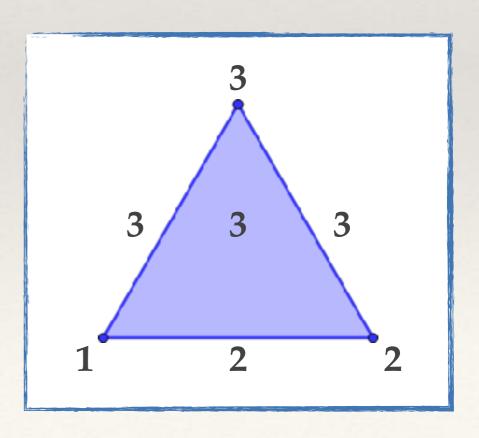


Vertex-based Filtration:

 $F:V\to\mathbb{N}$ induces a filtration on Σ

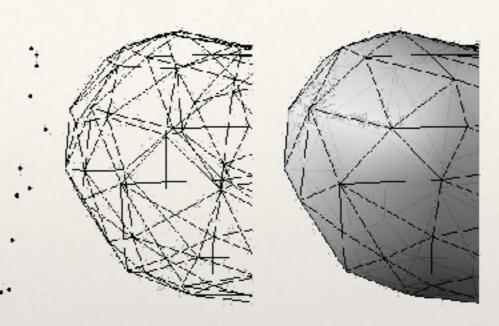
$$F(\sigma) := \max_{v \in \sigma} \{F(v)\}$$

•
$$\Sigma_p := \{ \sigma \in \Sigma \mid F(\sigma) \le p \}$$

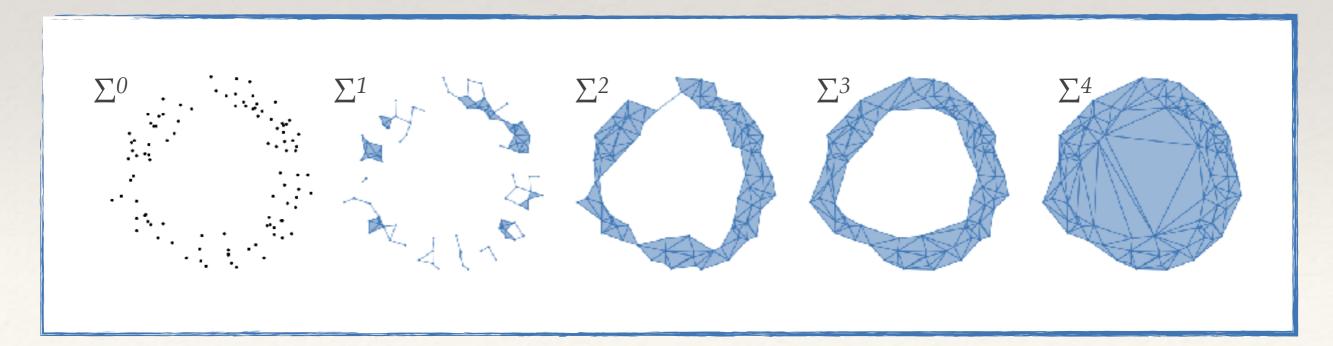


Various techniques can lead to

- simplicial complex
- filtered simplicial complex



Multi-scale Representation:



Standard Constructions:

- * Delaunay triangulations
 - Voronoi diagrams
- * Čech complexes
- * Vietoris-Rips complexes
- * Alpha-shapes
- Witness complexes

References:

H. Edelsbrunner, *Algorithms in Combinatorial Geometry*, 1987 H. Edelsbrunner, *Geometry and Topology for Mesh Generation*, 2001

Given a finite set of points V in \mathbb{R}^d :

	Output	Dimension
Delaunay triangulation	Simplicial Complex	d
Čech complex	Filtered Simplicial Complex	Arbitrary (up to <i>V</i> -1)
Vietoris-Rips complex	Filtered Simplicial Complex	Arbitrary (up to V -1)
Alpha-shapes	Filtered Simplicial Complex	d
Witness complexes	Filtered Simplicial Complex	Arbitrary (up to <i>V</i> -1)

Two Fundamental Notions:

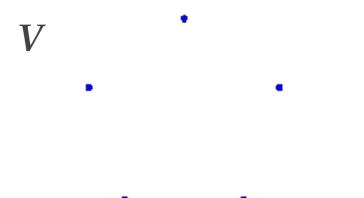
Nerve Complex

Abstract Simplicial Complex

Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

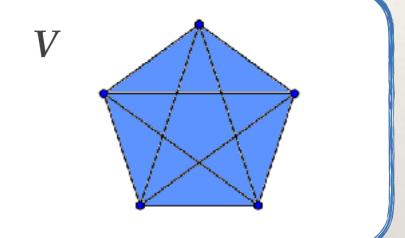
• if $\tau \in \Sigma$, $\sigma \subseteq \tau$, then $\sigma \in \Sigma$



Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

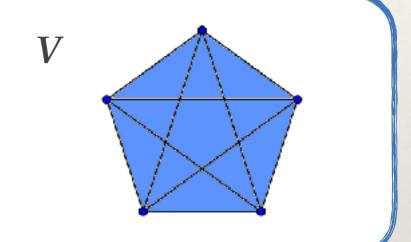
• if $\tau \in \Sigma$, $\sigma \subseteq \tau$, then $\sigma \in \Sigma$



Given a finite set V,

An abstract simplicial complex Σ on V is a collection of finite subsets of V such that:

• if $\tau \in \Sigma$, $\sigma \subseteq \tau$, then $\sigma \in \Sigma$



Properties:

- Any simplicial complex is an abstract simplicial complex on the set of its vertices
- Any abstract simplicial complex admits a *geometrical realization in* \mathbb{R}^n

Nerve Complex:

Given a finite collection S of closed sets in \mathbb{R}^d , the **nerve of** S is the *abstract simplicial complex* generated by the *non-empty common intersections*

Formally,

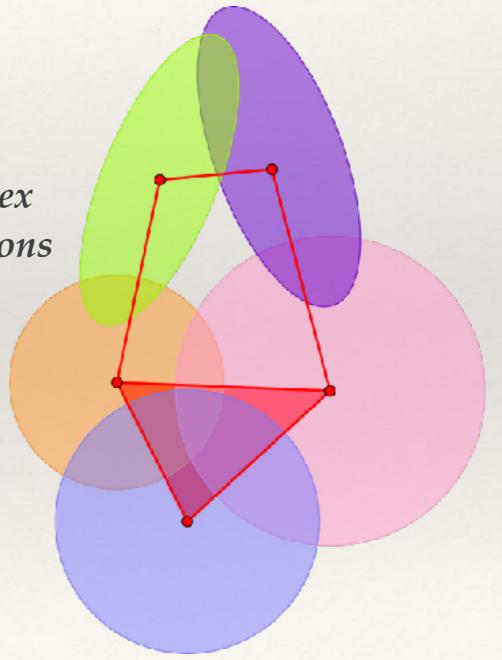
$$Nrv(S) := \{ \sigma \subseteq S \mid \bigcap \sigma \neq \emptyset \}$$

Nerve Complex:

Given a finite collection S of closed sets in \mathbb{R}^d , the **nerve of** S is the *abstract simplicial complex* generated by the *non-empty common intersections*

Formally,

$$Nrv(S) := \{ \sigma \subseteq S \mid \bigcap \sigma \neq \emptyset \}$$

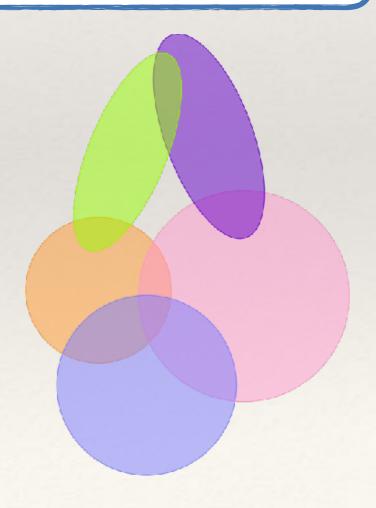


Nerve Theorem:

Let S be a finite collection of closed, **convex** sets in \mathbb{R}^d Then, the nerve of S and the union of the sets in S have the same homotopy type

Same Homotopy Type

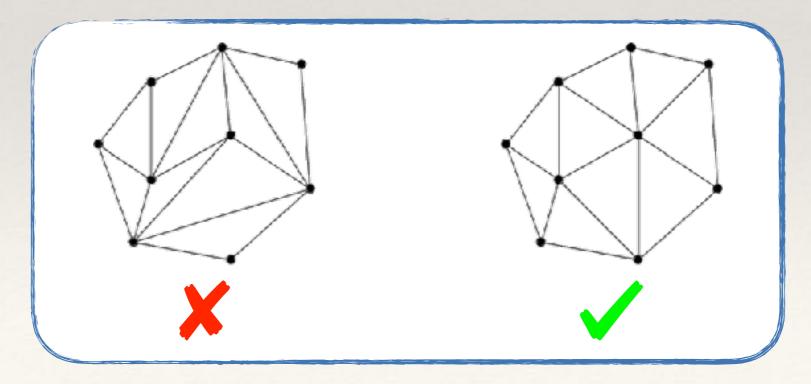
Isomorphic Homology



Given a finite set of points V in \mathbb{R}^2 ,

Delaunay Triangulation is a classic notion in Computational Geometry:

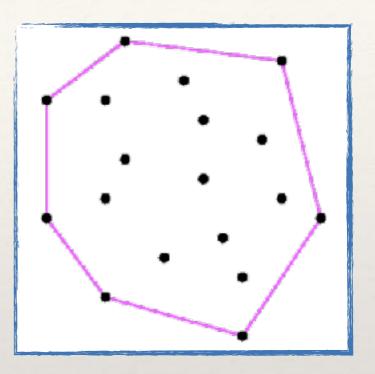
- ◆ Producing a "nice" triangulation of V
 - free of long and skinny triangles
- Named after Boris Delaunay for his work on this topic from 1934
- Originally defined for sets of points in a plane



Given a finite set of points V in \mathbb{R}^2 ,

Convex Hull of *V*:

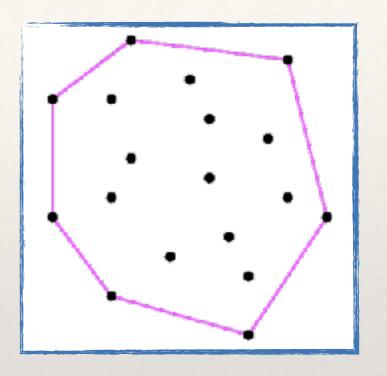
The *smallest convex* subset CH(V) of \mathbb{R}^2 containing all the points of V



Given a finite set of points V in \mathbb{R}^2 ,

Convex Hull of *V*:

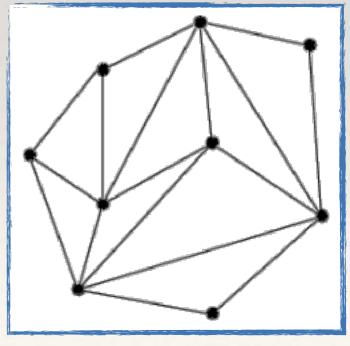
The *smallest convex* subset CH(V) of \mathbb{R}^2 containing all the points of V



Triangulation of *V*:

A 2-dimensional simplicial complex $\Sigma(V)$ such that:

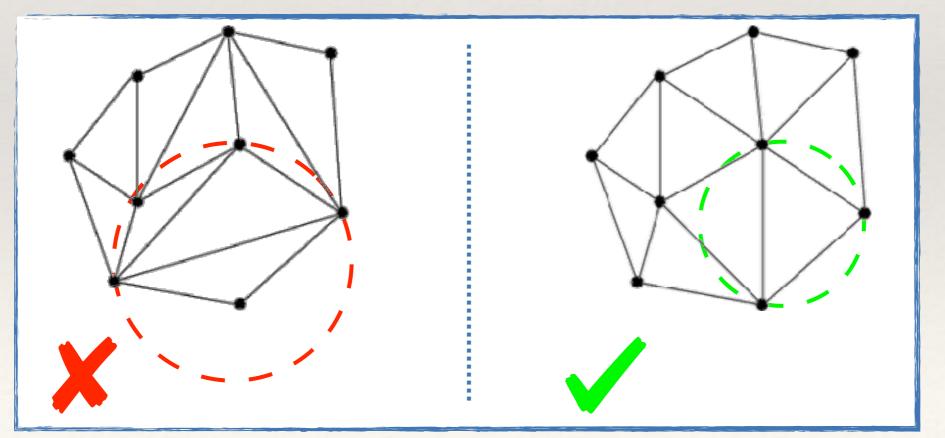
- The domain of Σ is CH(V)
- The 0-simplices of Σ are the points in V



Images from [De Floriani 2003]

Definition:

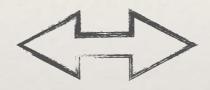
A **Delaunay triangulation** is a triangulation Del(V) of V such that: the **circumcircle of any triangle** does **not contain any point** of V in its interior



A finite set of points V in \mathbb{R}^d is in general position if no d+2 of the points lie on a common (d-1)-sphere

For d=2,

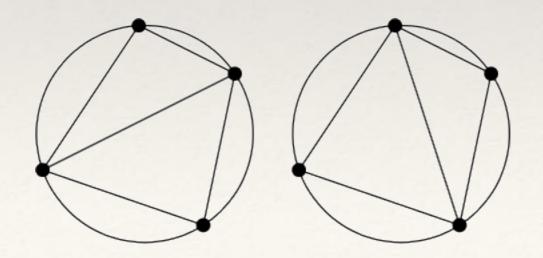
V in general position



no four or more points are co-circular

Uniqueness:

If V is in general position, then Del(V) is **unique**



Voronoi Region:

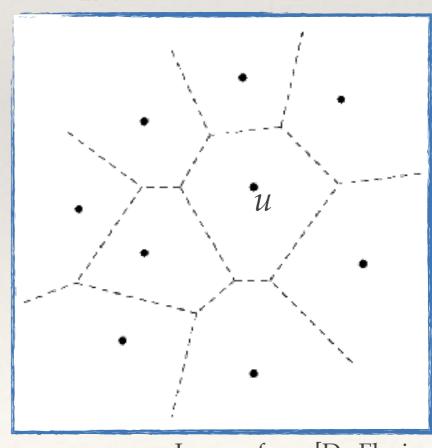
The *Voronoi region* of u in V is the set of points of \mathbb{R}^2 for which u is the closest

$$R_V(u) = \{ x \in \mathbb{R}^d \mid d(x, u) \le d(x, v), v \in V \}$$

- ◆ Any Voronoi region is a *convex* closed subset of R²
- ◆ A Voronoi region is *not necessarily bounded*

Voronoi Diagram:

The *Voronoi diagram* is the collection *Vor(V)* of the Voronoi regions of the points of *V*



Images from [De Floriani 2003]

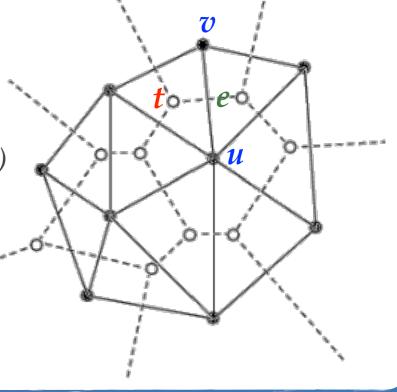
Duality Property:

If *V* is in general position, then

the Delaunay triangulation coincides with the nerve of the Voronoi diagram

$$Del(V) = \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} R_V(u) \neq \emptyset \}$$

- Every **point** u of V corresponds to a Voronoi region $R_V(u)$
- * Every **triangle** t of Del(V) correspond to a vertex in Vor(V)
- Every **edge** e=(u,v) in Del(V) corresponds to an edge shared by the two Voronoi regions $R_V(u)$ and $R_V(v)$



Algorithms:

- * Two-step algorithms:
 - Computation of an arbitrary triangulation Σ'
 - Optimization of Σ' to produce a Delaunay triangulation
- Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
 - Modification of an existing Delaunay triangulation while adding a new vertex at a time
- ◆ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
 - Recursive partition of the point set into two halves
 - Merging of the computed partial solutions
- *→ Sweep-line algorithms* [Fortune 1989]:
 - Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

Watson's Algorithm:

A Delaunay triangulation is computed by **incrementally adding a single point** to an existing Delaunay triangulation

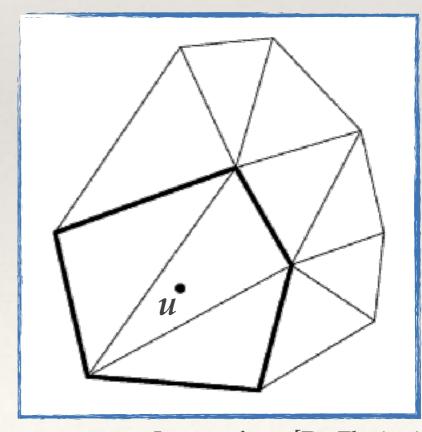
Let V_i be a subset of V and let u be a point in $V \setminus V_i$

Input:

 $Del(V_i)$, a Delaunay triangulation of V_i

Output:

 $Del(V_{i+1})$, a Delaunay triangulation of $V_{i+1}:=V_i \cup \{u\}$

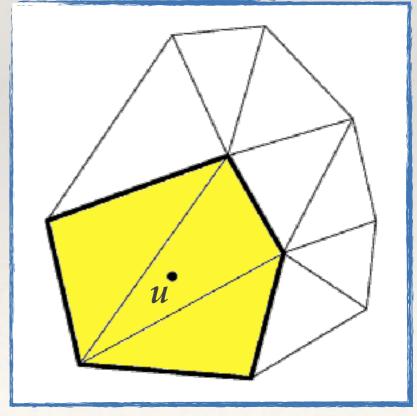


Images from [De Floriani 2003]

Watson's Algorithm:

The *influence region* R_u of a point u is the region in the plane formed by the union of the triangles in $Del(V_i)$ whose circumcircle contains u in its interior

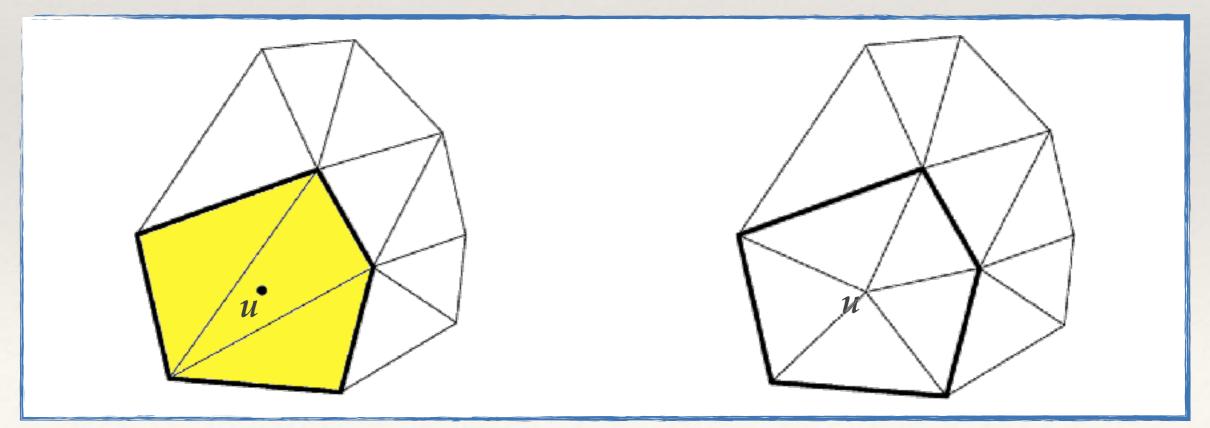
The *influence polygon* P_u of u is the polygon formed by the edges of the triangles of $Del(V_i)$ which bound R_u



Images from [De Floriani 2003]

Watson's Algorithm:

- <u>Step 1</u>: deletion of the triangles of $Del(V_i)$ forming the *influence region* R_u
- Step 2: re-triangulation of R_u by joining u to the vertices of the influence polygon P_u



Watson's Algorithm:

Let $n_i = |V_i|$

- Detection of a triangle σ of $Del(V_i)$ containing the new point u: $O(n_i)$ in the worst case
- Detection of the triangles forming the region of influence through a breadth-first search: $O(|R_u|)$
- Re-triangulation of P_u is in $O(|P_u|)$
- Inserting a point u in a triangulation with n_i vertices: $O(n_i)$ in the worst case
- Inserting all points of V: $O(n^2)$ in the worst case, where n = |V|

Čech Complex

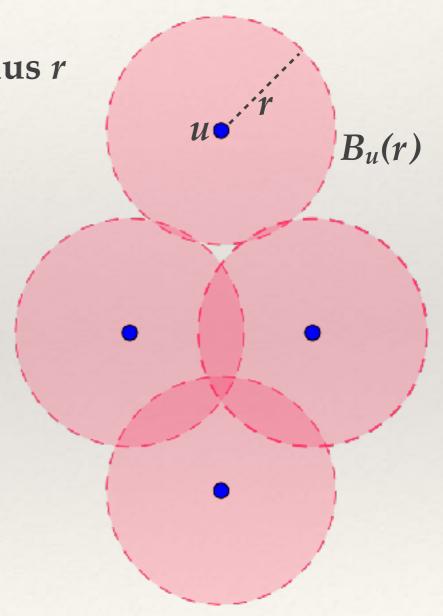
Given a finite set of points V in \mathbb{R}^d , let us consider:

Čech Complex

Given a finite set of points V in \mathbb{R}^d , let us consider:

→ $B_u(r)$, the closed ball with center u ∈ V and radius r

◆ *S*, the collection of these balls



Čech Complex

Given a finite set of points V in \mathbb{R}^d , let us consider:

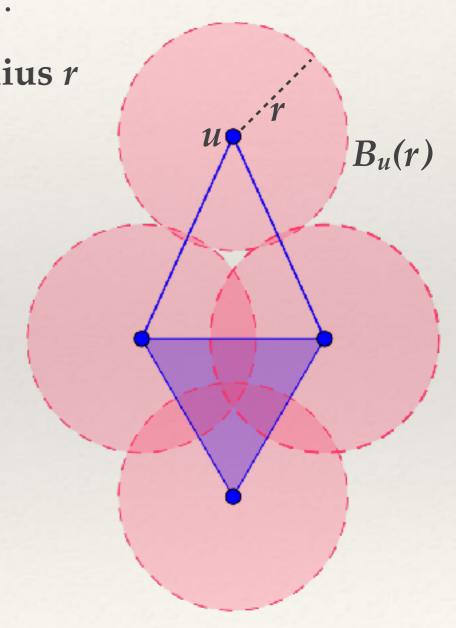
◆ $B_u(r)$, the closed ball with center $u \in V$ and radius r

◆ *S*, the collection of these balls

The $\check{\mathbf{Cech}}$ complex $\check{\mathbf{Cech}}(r)$ of V of radius r is the **nerve of** S

$$\check{C}ech(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} B_u(r) \neq \emptyset \}$$

In practice, infeasible construction

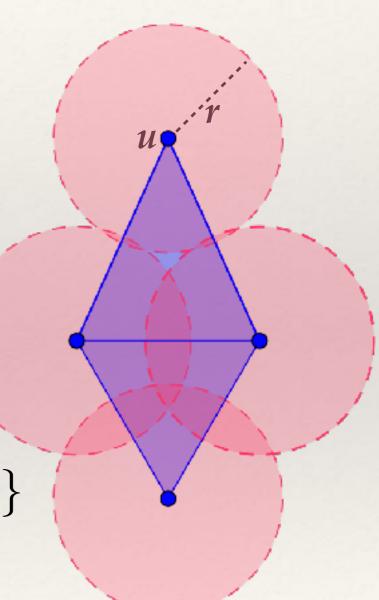


Given a finite set of points V in \mathbb{R}^d ,

The **Vietoris-Rips complex** *VR(r)* of *V* and r is the *abstract simplicial complex* consisting of all *subsets of diameter at most 2r*

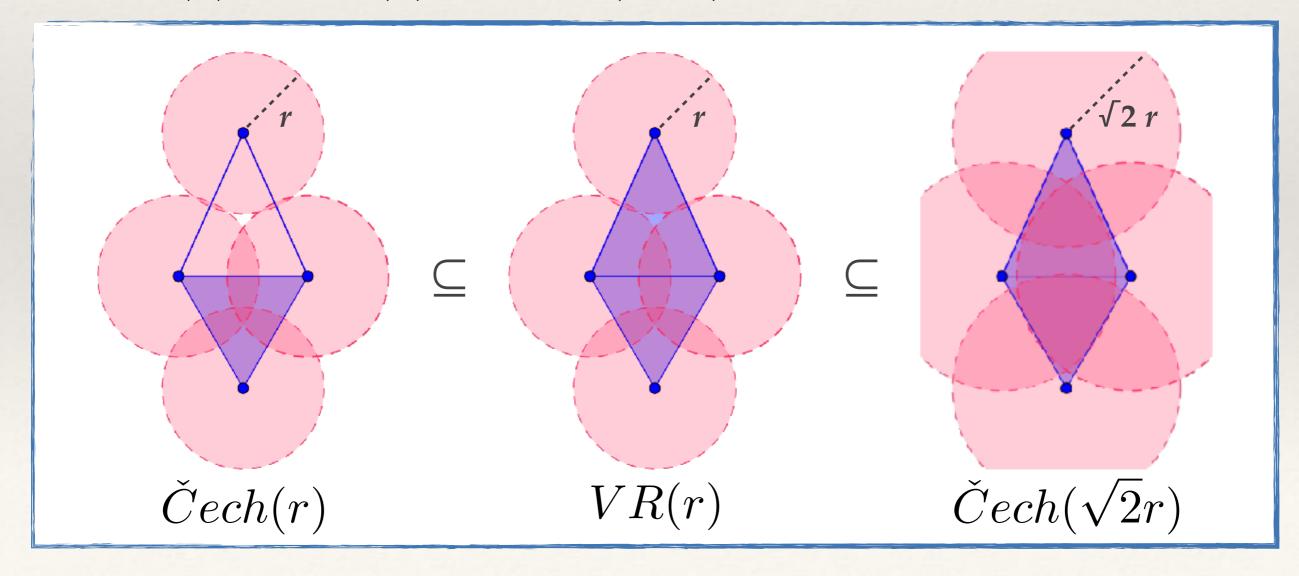
Formally,

$$VR(r) := \{ \sigma \subseteq V \mid d(u, v) \le 2r, \forall u, v \in \sigma \}$$



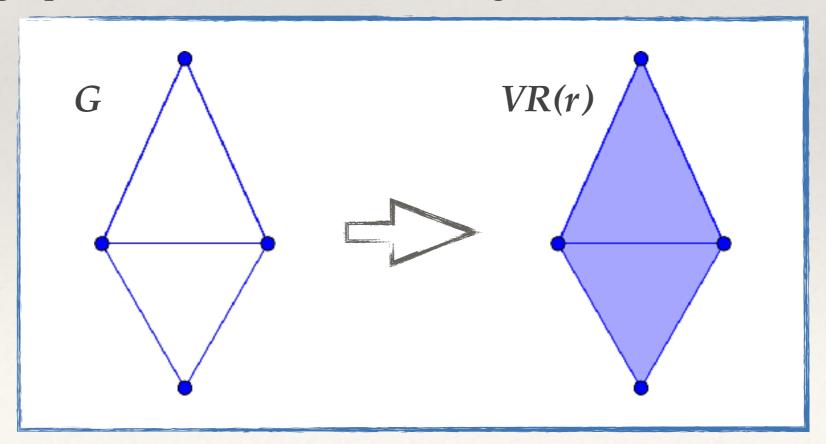
Properties:

• $\check{C}ech(r) \subseteq VR(r) \subseteq \check{C}ech(\sqrt{2}r)$



Properties:

- $\check{C}ech(r) \subseteq VR(r) \subseteq \check{C}ech(\sqrt{2}r)$
- VR(r) is completely determined by its 1-skeleton
 - i.e., the graph *G* of its vertices and its edges



Computation:

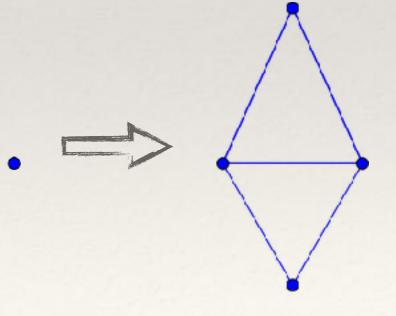
[Zomorodian 2010]

Input: finite set of points V in R^d and a real positive number r

Output: the Vietoris-Rips complex VR(r)

Two-step Algorithm:

- **+ 1-Skeleton Computation:**
 - *Exact* $(O(|V|^2)$ time complexity)
 - Approximate
 - Randomized
 - Landmarking
- **+ Vietoris-Rips Expansion:**
 - Inductive
 - Incremental
 - Maximal



Computation:

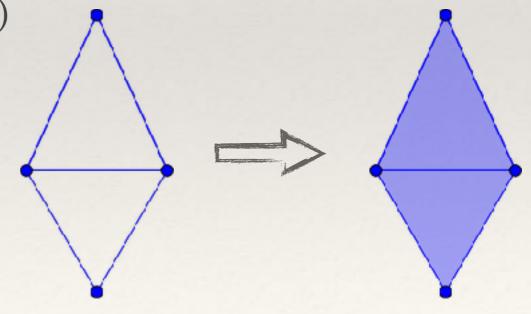
[Zomorodian 2010]

Input: finite set of points V in R^d and a real positive number r

Output: the Vietoris-Rips complex VR(r)

Two-step Algorithm:

- **+ 1-Skeleton Computation:**
 - *Exact* $(O(|V|^2)$ time complexity)
 - Approximate
 - Randomized
 - Landmarking
- **+ Vietoris-Rips Expansion:**
 - Inductive
 - Incremental
 - Maximal



Inductive VR expansion:

Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) $\Sigma = V \cup E$

for i=1 to k

foreach *i*-simplex $\sigma \in \Sigma$

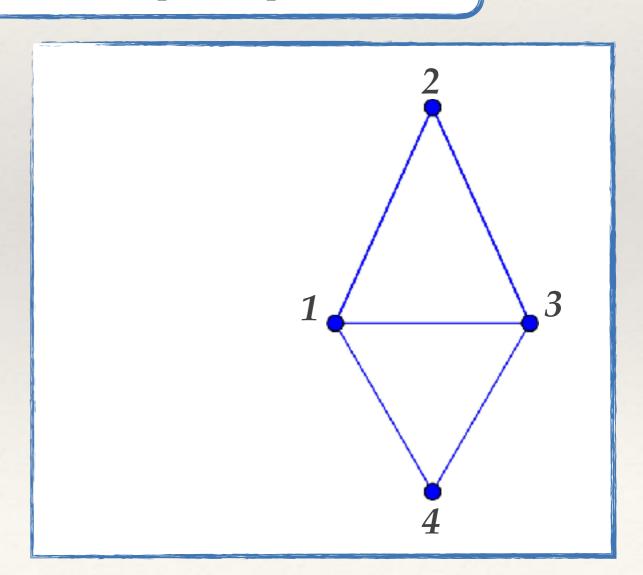
$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach $v \in N$

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return Σ

LOWER-NBRS(G, u)



Inductive VR expansion:

Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E

for i=1 to k

foreach i-simplex \sigma \in \Sigma
```

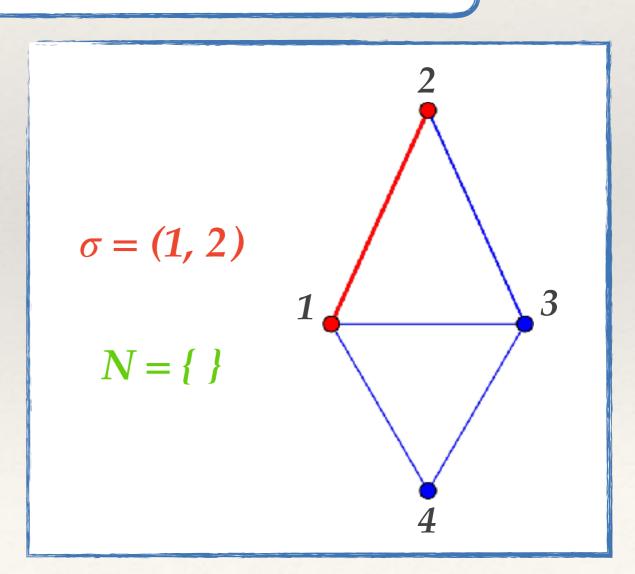
$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach $v \in N$

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return Σ

LOWER-NBRS(G, u)



Inductive VR expansion:

Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E

for i=1 to k

foreach i-simplex \sigma \in \Sigma
```

$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach $v \in N$

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return Σ

LOWER-NBRS(G, u)



Inductive VR expansion:

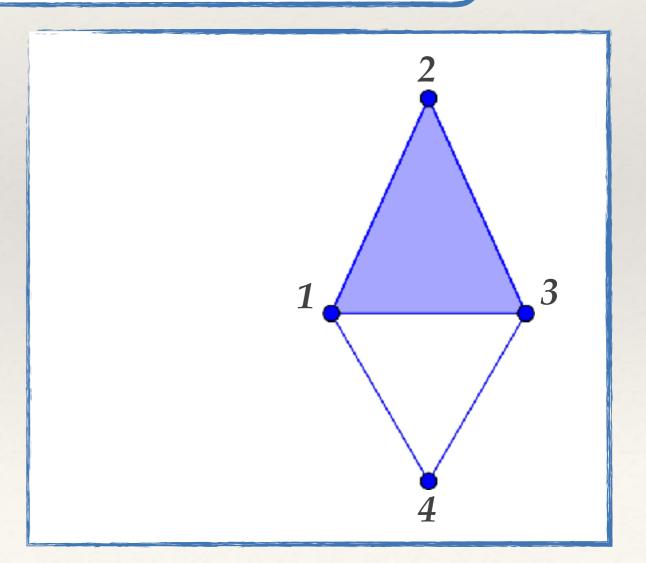
Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) $\Sigma = V \cup E$ for i=1 to kforeach i-simplex $\sigma \in \Sigma$ $N = \bigcap_{u \in \sigma} \text{LOWER-NBRS}(G, u)$ foreach $v \in N$ $\Sigma = \Sigma \cup \{ \sigma \cup \{v\} \}$

LOWER-NBRS(G, u)
return { $v \in V \mid u > v$, $(u, v) \in E$ }

return Σ



Inductive VR expansion:

Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E
for i=1 to k
foreach i-simplex \sigma \in \Sigma
```

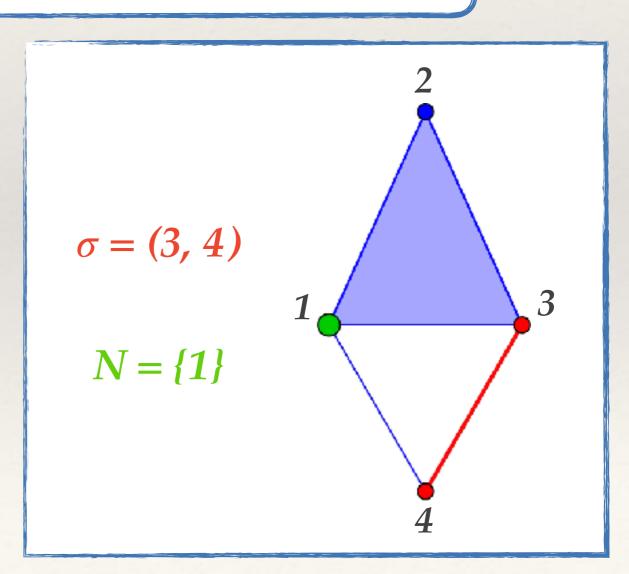
$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach $v \in N$

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

 $return \ \Sigma$

LOWER-NBRS(G, u)

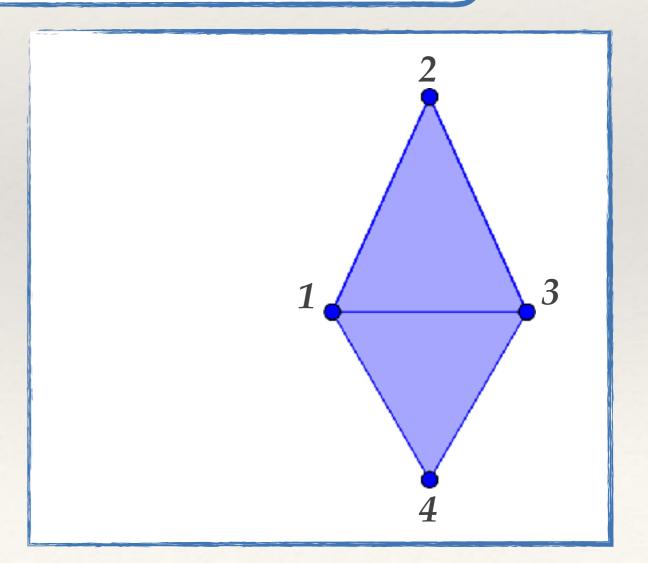


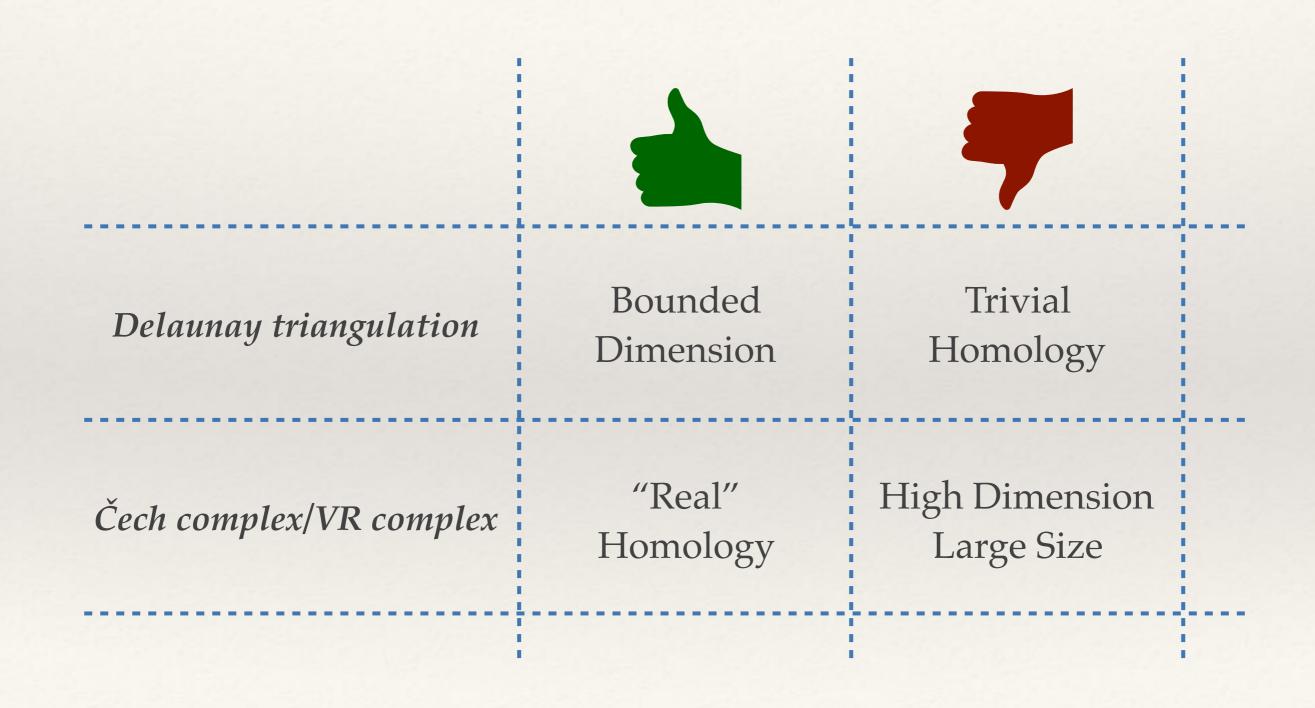
Inductive VR expansion:

Input: the 1-skeleton G=(V, E) of VR(r)

Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

INDUCTIVE-VR(G, k) $\Sigma = V \cup E$ for i=1 to kforeach *i*-simplex $\sigma \in \Sigma$ $N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$ foreach $v \in N$ $\Sigma = \Sigma \cup \{ \sigma \cup \{v\} \}$ return Σ LOWER-NBRS(G, u) return $\{v \in V \mid u > v, (u, v) \in E\}$





Alpha-shape

Given a finite set of points V in general position of \mathbb{R}^d , let us consider:

- $A_u(r) := B_u(r) \cap R_V(u)$
 - **intersection** of the **closed ball of radius** *r* centered in *u* and the **Voronoi region** of *u*
- ◆ *S*, the collection of these convex sets

The **Alpha-shape** Alpha(r) of V of radius r is the **nerve of** S

Formally,

$$Alpha(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} A_u(r) \neq \emptyset \}$$

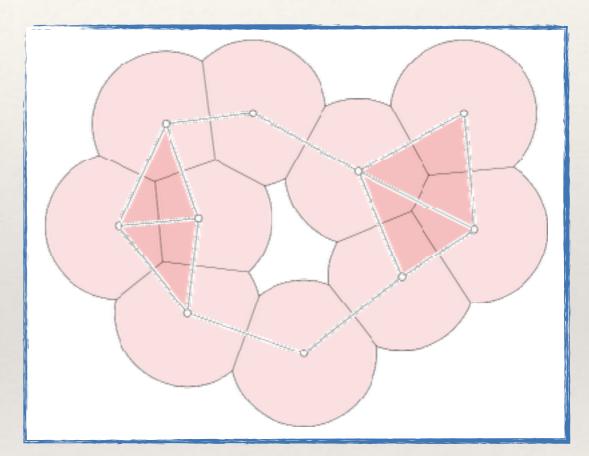


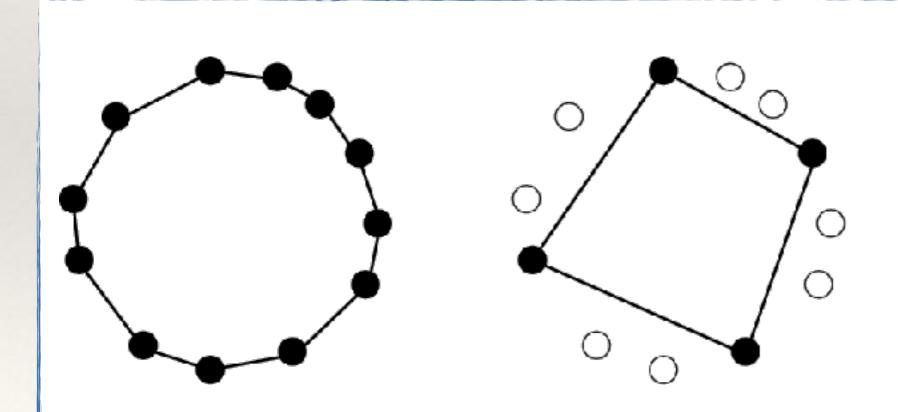
Image from [Edelsbrunner, Harer 2010]

$$A_u(r) \subseteq B_u(r) \implies Alpha(r) \subseteq \check{C}ech(r)$$

Witness Complex

Motivation:

Retrieving the topological information does not require to consider all the input points



- Landmarks: selected points
- Witnesses:remaining points

Witness Complex

For each witness w,

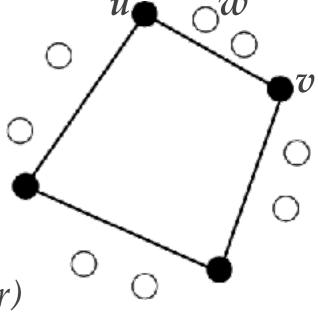
 m_w : = the distance of w from the 2nd closest landmark

The witness complex W(r) of radius r is defined by:

- u is in W(r) if u is a landmark
- (u,v) is in W(r) if there exists a witness w such that

$$max\{d(u,w),d(v,w)\} \le m_w + r$$

• the *i*-simplex σ is in W(r) if all its edges belong to W(r)



 $W_0(r)$ is defined by setting $\mathbf{m}_{\mathbf{w}} = \mathbf{0}$ for any witness w

$$W_0(r) \subseteq VR(r) \subseteq W_0(2r)$$

Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

Thank you

Ulderico Fugacci

TU Kaiserslautern, Dept. of Computer Science