#### "Persistent Homology" Summer School - Rabat

# From a Point Cloud To a Filtered Simplicial Complex

**Ulderico Fugacci** 

Kaiserslautern University of Technology
Department of Computer Science



### Outline

Describing a Shape through Persistence Pairs

### Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

#### In a Nutshell:



Image from [Ghrist 2008]

Persistent homology allows for **describing the changes in the shape** of an evolving object

### An Evolving Notion:



#### **Size Functions:**

- \* Estimation of natural pseudo-distance between shapes endowed with a function *f*
- Tracking of the *connected components* of a shape along its evolution induced by f



Image from [Frosini 1992]

Actually, this coincides with *persistent homology in degree 0* 

### An Evolving Notion:



#### **Incremental Algorithm for Betti Numbers:**

- Introduction of the notion of filtration
- De facto computation of persistence pairs



### An Evolving Notion:



#### **Homology from Finite Approximations:**

- \* Extrapolation of the homology of a metric space from a finite point-set approximation
- Introduction of persistent Betti numbers



Image from [Robins 1999]

### An Evolving Notion:



#### **Topological Persistence:**

- Introduction and algebraic formulation of the notion of *persistent homology*
- Description of an algorithm for computing persistent homology



### A Twofold Purpose:

### **Shape Description**

\* Which is the shape of a given data?



### **Shape Comparison**

• Given two data, do they have the same shape?

#### \* Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data



#### • Which is the shape of a given data?

Persistent homology allows for the retrieval of the "actual" homological information of a data



Image from [Dey et al. 2008]

**Noisy Dataset** 



Relevant Homological Information

The *core information* of persistent homology is given by the *persistence pairs* 

#### **Persistence Pairs:**

Given a filtration  $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$ ,



A **persistence pair** (p, q) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

The *core information* of persistent homology is given by the *persistence pairs* 

#### **Persistence Pairs:**

Given a filtration  $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$ ,



(2, 3)

A **persistence pair** (p, q) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

The *core information* of persistent homology is given by the *persistence pairs* 

#### **Persistence Pairs:**

Given a filtration  $\Sigma^0 \subseteq \Sigma^1 \subseteq ... \subseteq \Sigma^m$ ,



A **persistence pair** (p, q) is an element in  $\{0, ..., m\} \times (\{0, ..., m\} \cup \{\infty\})$  such that p < q representing a **homological class** that is **born at step** p and **dies at step** q

 $(2, \infty)$  essential pair

Given a filtered simplicial complex  $\Sigma$ ,



#### Persistent pairs of $\Sigma$ can be visualized through:

- \* *Barcodes* [Carlsson et al. 2005; Ghrist 2008]
- Persistence diagrams [Edelsbrunner, Harer 2008]
- Persistence landscapes [Bubenik 2015]
- Corner points and lines [Frosini, Landi 2001]
- \* *Half-open intervals* [Edelsbrunner et al. 2002]
- \* *k-triangles* [Edelsbrunner et al. 2002]



Given a filtered simplicial complex  $\Sigma$ ,



#### Persistent pairs of $\Sigma$ can be visualized through:

- ◆ Barcodes [Carlsson et al. 2005; Ghrist 2008]
- Persistence diagrams [Edelsbrunner, Harer 2008]
- Persistence landscapes [Bubenik 2015]
- \* Corner points and lines [Frosini, Landi 2001]
- \* *Half-open intervals* [Edelsbrunner et al. 2002]
- \* *k-triangles* [Edelsbrunner et al. 2002]



### **Barcodes:**



### Persistence Diagrams:



### Persistence Diagrams:



Both tools *visually represent* the *lifespan* of the homology classes:

- \* Barcode: length of the intervals
- \* Persistence Diagram: distance from the diagonal

Barcodes and Persistence Diagrams encode *equivalent* information





Barcodes and Persistence Diagrams encode equivalent information



\* Do they have the same shape?





\* Do they have the same shape?





In Practice?

In Theory?

\* Do they have the same shape?





In Practice?



In Theory?



They are homeomorphic

\* Do they have the same shape?





\* Do they have the same shape?





In Practice?

In Theory?

\* Do they have the same shape?





In Practice?



In Theory?



They are **not homeomorphic** 

It is possible to *compare two shapes* by comparing their *homology groups* 

It is possible to *compare two shapes* by comparing their *homology groups* 

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

It is possible to *compare two shapes* by comparing their *howere two shapes* by comparing the compar

Differently from homology, persistent homology provides a notion of "shape" closer to our everyday perception

Need for a notion of *distance* between sets of persistence pairs

### Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)



Image from [Rieck 2016]

### Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)



Image from [Rieck 2016]

**→** Bottleneck distance

$$d_B(X,Y) = \inf_{\gamma} \sup_{x} ||x - \gamma(x)||_{\infty}$$

### Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)



Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance

$$d_W^q(X, Y) = \left(\inf_{\gamma} \sum_{x} ||x - \gamma(x)||_{\infty}^q\right)^{1/q}$$
 $d_W^{\infty} = d_B$ 

### Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)



Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance
- Hausdorff distance

$$egin{aligned} d_H(X,Y) &= \max\left\{\sup_x \inf_y \|x-y\|_\infty, \sup_y \inf_x \|y-x\|_\infty
ight\} \ d_H &\leq d_B \end{aligned}$$

### Distances between Persistence Diagrams:

[Cohen-Steiner et al. 2007]

Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)



Image from [Rieck 2016]

- ◆ Bottleneck distance
- Wasserstein distance
- → Hausdorff distance

### **Stability**:

Similar shapes have similar persistence diagrams?

### Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

### **Point Cloud Datasets:**

More and more, data consist of **point clouds**:

• finite set of points V in  $\mathbb{R}^d$  (more generally, embedded in a metric space)



#### **Coordinates**



actual geometric position

values of attributes attached to each point

We represent these *unorganized*, *large-size* and *high-dimensional data* through simplicial complexes

Various techniques can lead to

- simplicial complex
- filtered simplicial complex



Various techniques can lead to

- simplicial complex
- + filtered simplicial complex

### **Vertex-based Filtration:**

 $F: V \to \mathbb{N}$  induces a filtration on  $\Sigma$ 





Various techniques can lead to

- simplicial complex
- filtered simplicial complex



### **Vertex-based Filtration:**

 $F:V\to\mathbb{N}$  induces a filtration on  $\Sigma$ 

$$F(\sigma) := \max_{v \in \sigma} \{F(v)\}$$

• 
$$\Sigma_p := \{ \sigma \in \Sigma \mid F(\sigma) \le p \}$$



Various techniques can lead to

- simplicial complex
- filtered simplicial complex



### Multi-scale Representation:



### **Standard Constructions:**

- \* Delaunay triangulations
  - Voronoi diagrams
- \* Čech complexes
- \* Vietoris-Rips complexes
- \* Alpha-shapes
- Witness complexes

#### **References:**

H. Edelsbrunner, *Algorithms in Combinatorial Geometry*, 1987 H. Edelsbrunner, *Geometry and Topology for Mesh Generation*, 2001

Given a finite set of points V in  $\mathbb{R}^d$ :

|                        | Output                         | Dimension                        |
|------------------------|--------------------------------|----------------------------------|
| Delaunay triangulation | Simplicial Complex             | d                                |
| Čech complex           | Filtered Simplicial<br>Complex | Arbitrary (up to   <i>V</i>  -1) |
| Vietoris-Rips complex  | Filtered Simplicial<br>Complex | Arbitrary (up to   V -1)         |
| Alpha-shapes           | Filtered Simplicial<br>Complex | d                                |
| Witness complexes      | Filtered Simplicial<br>Complex | Arbitrary (up to   <i>V</i>  -1) |

**Two Fundamental Notions:** 

**Nerve Complex** 

**Abstract Simplicial Complex** 

Given a finite set V,

An abstract simplicial complex  $\Sigma$  on V is a collection of finite subsets of V such that:

• if  $\tau \in \Sigma$ ,  $\sigma \subseteq \tau$ , then  $\sigma \in \Sigma$ 



Given a finite set V,

An abstract simplicial complex  $\Sigma$  on V is a collection of finite subsets of V such that:

• if  $\tau \in \Sigma$ ,  $\sigma \subseteq \tau$ , then  $\sigma \in \Sigma$ 



Given a finite set V,

An abstract simplicial complex  $\Sigma$  on V is a collection of finite subsets of V such that:

• if  $\tau \in \Sigma$ ,  $\sigma \subseteq \tau$ , then  $\sigma \in \Sigma$ 



### **Properties:**

- Any simplicial complex is an abstract simplicial complex on the set of its vertices
- Any abstract simplicial complex admits a *geometrical realization in*  $\mathbb{R}^n$

### **Nerve Complex:**

Given a finite collection S of closed sets in  $\mathbb{R}^d$ , the **nerve of** S is the *abstract simplicial complex* generated by the *non-empty common intersections* 

Formally,

$$Nrv(S) := \{ \sigma \subseteq S \mid \bigcap \sigma \neq \emptyset \}$$

### **Nerve Complex:**

Given a finite collection S of closed sets in  $\mathbb{R}^d$ , the **nerve of** S is the *abstract simplicial complex* generated by the *non-empty common intersections* 

Formally,

$$Nrv(S) := \{ \sigma \subseteq S \mid \bigcap \sigma \neq \emptyset \}$$



### **Nerve Theorem:**

Let S be a finite collection of closed, **convex** sets in  $\mathbb{R}^d$ Then, the nerve of S and the union of the sets in S have the same homotopy type

**Same Homotopy Type** 



**Isomorphic Homology** 





Given a finite set of points V in  $\mathbb{R}^2$ ,

**Delaunay Triangulation** is a classic notion in Computational Geometry:

- ◆ Producing a "nice" triangulation of V
  - free of long and skinny triangles
- Named after Boris Delaunay for his work on this topic from 1934
- Originally defined for sets of points in a plane



Given a finite set of points V in  $\mathbb{R}^2$ ,

Convex Hull of *V*:

The *smallest convex* subset CH(V) of  $\mathbb{R}^2$  containing all the points of V



Given a finite set of points V in  $\mathbb{R}^2$ ,

### Convex Hull of *V*:

The *smallest convex* subset CH(V) of  $\mathbb{R}^2$  containing all the points of V



### Triangulation of *V*:

A 2-dimensional simplicial complex  $\Sigma(V)$  such that:

- The domain of  $\Sigma$  is CH(V)
- The 0-simplices of  $\Sigma$  are the points in V



Images from [De Floriani 2003]

### **Definition:**

A **Delaunay triangulation** is a triangulation Del(V) of V such that: the **circumcircle of any triangle** does **not contain any point** of V in its interior



A finite set of points V in  $\mathbb{R}^d$  is in general position if no d+2 of the points lie on a common (d-1)-sphere

For d=2,

V in general position



no four or more points are co-circular

Uniqueness:

If V is in general position, then Del(V) is **unique** 



### Voronoi Region:

The *Voronoi region* of u in V is the set of points of  $\mathbb{R}^2$  for which u is the closest

$$R_V(u) = \{ x \in \mathbb{R}^d \mid d(x, u) \le d(x, v), v \in V \}$$

- ◆ Any Voronoi region is a *convex* closed subset of R<sup>2</sup>
- ◆ A Voronoi region is *not necessarily bounded*

### Voronoi Diagram:

The *Voronoi diagram* is the collection *Vor(V)* of the Voronoi regions of the points of *V* 



Images from [De Floriani 2003]

### **Duality Property:**

If *V* is in general position, then

the Delaunay triangulation coincides with the nerve of the Voronoi diagram

$$Del(V) = \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} R_V(u) \neq \emptyset \}$$

- Every **point** u of V corresponds to a Voronoi region  $R_V(u)$
- \* Every **triangle** t of Del(V) correspond to a vertex in Vor(V)
- Every **edge** e=(u,v) in Del(V) corresponds to an edge shared by the two Voronoi regions  $R_V(u)$  and  $R_V(v)$



### **Algorithms:**

- \* Two-step algorithms:
  - Computation of an arbitrary triangulation  $\Sigma'$
  - Optimization of  $\Sigma'$  to produce a Delaunay triangulation
- Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]:
  - Modification of an existing Delaunay triangulation while adding a new vertex at a time
- ◆ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]:
  - Recursive partition of the point set into two halves
  - Merging of the computed partial solutions
- *→ Sweep-line algorithms* [Fortune 1989]:
  - Step-wise construction of a Delaunay triangulation while moving a sweep-line in the plane

### Watson's Algorithm:

A Delaunay triangulation is computed by **incrementally adding a single point** to an existing Delaunay triangulation

Let  $V_i$  be a subset of V and let u be a point in  $V \setminus V_i$ 

### **Input:**

 $Del(V_i)$ , a Delaunay triangulation of  $V_i$ 

### **Output:**

 $Del(V_{i+1})$ , a Delaunay triangulation of  $V_{i+1}:=V_i \cup \{u\}$ 



Images from [De Floriani 2003]

### Watson's Algorithm:

The *influence region*  $R_u$  of a point u is the region in the plane formed by the union of the triangles in  $Del(V_i)$  whose circumcircle contains u in its interior

The *influence polygon*  $P_u$  of u is the polygon formed by the edges of the triangles of  $Del(V_i)$  which bound  $R_u$ 



Images from [De Floriani 2003]

### Watson's Algorithm:

- <u>Step 1</u>: deletion of the triangles of  $Del(V_i)$  forming the *influence region*  $R_u$
- Step 2: re-triangulation of  $R_u$  by joining u to the vertices of the influence polygon  $P_u$



### Watson's Algorithm:

Let  $n_i = |V_i|$ 

- Detection of a triangle  $\sigma$  of  $Del(V_i)$  containing the new point u:  $O(n_i)$  in the worst case
- Detection of the triangles forming the region of influence through a breadth-first search:  $O(|R_u|)$
- Re-triangulation of  $P_u$  is in  $O(|P_u|)$
- Inserting a point u in a triangulation with  $n_i$  vertices:  $O(n_i)$  in the worst case
- Inserting all points of V:  $O(n^2)$  in the worst case, where n = |V|

# Čech Complex

Given a finite set of points V in  $\mathbb{R}^d$ , let us consider:

# Čech Complex

Given a finite set of points V in  $\mathbb{R}^d$ , let us consider:

→  $B_u(r)$ , the closed ball with center u ∈ V and radius r

◆ *S*, the collection of these balls



# Čech Complex

Given a finite set of points V in  $\mathbb{R}^d$ , let us consider:

◆  $B_u(r)$ , the closed ball with center  $u \in V$  and radius r

◆ *S*, the collection of these balls

The  $\check{\mathbf{Cech}}$  complex  $\check{\mathbf{Cech}}(r)$  of V of radius r is the **nerve of** S

$$\check{C}ech(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} B_u(r) \neq \emptyset \}$$



In practice, infeasible construction



Given a finite set of points V in  $\mathbb{R}^d$ ,

The **Vietoris-Rips complex** *VR(r)* of *V* and r is the *abstract simplicial complex* consisting of all *subsets of diameter at most 2r* 

Formally,

$$VR(r) := \{ \sigma \subseteq V \mid d(u, v) \le 2r, \forall u, v \in \sigma \}$$



### **Properties:**

•  $\check{C}ech(r) \subseteq VR(r) \subseteq \check{C}ech(\sqrt{2}r)$ 



### **Properties:**

- $\check{C}ech(r) \subseteq VR(r) \subseteq \check{C}ech(\sqrt{2}r)$
- VR(r) is completely determined by its 1-skeleton
  - i.e., the graph *G* of its vertices and its edges



Computation:

[Zomorodian 2010]

**Input:** finite set of points V in  $R^d$  and a real positive number r

**Output:** the Vietoris-Rips complex VR(r)

### **Two-step Algorithm:**

- **+ 1-Skeleton Computation:** 
  - *Exact*  $(O(|V|^2)$  time complexity)
  - Approximate
  - Randomized
  - Landmarking
- **+ Vietoris-Rips Expansion:** 
  - Inductive
  - Incremental
  - Maximal



### Computation:

[Zomorodian 2010]

**Input:** finite set of points V in  $R^d$  and a real positive number r

**Output:** the Vietoris-Rips complex VR(r)

### Two-step Algorithm:

- **+ 1-Skeleton Computation:** 
  - *Exact*  $(O(|V|^2)$  time complexity)
  - Approximate
  - Randomized
  - Landmarking
- **+ Vietoris-Rips Expansion:** 
  - Inductive
  - Incremental
  - Maximal



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

# INDUCTIVE-VR(G, k) $\Sigma = V \cup E$

for i=1 to k

foreach *i*-simplex  $\sigma \in \Sigma$ 

$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach  $v \in N$ 

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return  $\Sigma$ 

#### LOWER-NBRS(G, u)



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

### INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E

for i=1 to k

foreach i-simplex \sigma \in \Sigma
```

$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach  $v \in N$ 

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return  $\Sigma$ 

### LOWER-NBRS(G, u)



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

### INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E

for i=1 to k

foreach i-simplex \sigma \in \Sigma
```

$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach  $v \in N$ 

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

return  $\Sigma$ 

### LOWER-NBRS(G, u)



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

# INDUCTIVE-VR(G, k) $\Sigma = V \cup E$ for i=1 to kforeach i-simplex $\sigma \in \Sigma$ $N = \bigcap_{u \in \sigma} \text{LOWER-NBRS}(G, u)$ foreach $v \in N$ $\Sigma = \Sigma \cup \{ \sigma \cup \{v\} \}$

LOWER-NBRS(G, u)
return { $v \in V \mid u > v$ ,  $(u, v) \in E$ }

return  $\Sigma$ 



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

### INDUCTIVE-VR(G, k)

```
\Sigma = V \cup E
for i=1 to k
foreach i-simplex \sigma \in \Sigma
```

$$N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$$

foreach  $v \in N$ 

$$\Sigma = \Sigma \cup \{ \ \sigma \cup \{v\} \}$$

 $return \ \Sigma$ 

### LOWER-NBRS(G, u)



### Inductive VR expansion:

**Input:** the 1-skeleton G=(V, E) of VR(r)

**Output:** the k-skeleton  $\Sigma$  of the Vietoris-Rips complex VR(r)

### INDUCTIVE-VR(G, k) $\Sigma = V \cup E$ for i=1 to kforeach *i*-simplex $\sigma \in \Sigma$ $N = \bigcap_{u \in \sigma} LOWER-NBRS(G, u)$ foreach $v \in N$ $\Sigma = \Sigma \cup \{ \sigma \cup \{v\} \}$ return $\Sigma$ LOWER-NBRS(G, u) return $\{v \in V \mid u > v, (u, v) \in E\}$





# Alpha-shape

Given a finite set of points V in general position of  $\mathbb{R}^d$ , let us consider:

- $A_u(r) := B_u(r) \cap R_V(u)$ 
  - **intersection** of the **closed ball of radius** *r* centered in *u* and the **Voronoi region** of *u*
- ◆ *S*, the collection of these convex sets

The **Alpha-shape** Alpha(r) of V of radius r is the **nerve of** S

Formally,

$$Alpha(r) := \{ \sigma \subseteq V \mid \bigcap_{u \in \sigma} A_u(r) \neq \emptyset \}$$



Image from [Edelsbrunner, Harer 2010]

$$A_u(r) \subseteq B_u(r) \implies Alpha(r) \subseteq \check{C}ech(r)$$

# Witness Complex

### **Motivation:**

Retrieving the topological information does not require to consider all the input points



- Landmarks: selected points
- Witnesses:remaining points

# Witness Complex

For each witness w,

 $m_w$ : = the distance of w from the 2nd closest landmark

The witness complex W(r) of radius r is defined by:

- u is in W(r) if u is a landmark
- (u,v) is in W(r) if there exists a witness w such that

$$max\{d(u,w),d(v,w)\} \le m_w + r$$

• the *i*-simplex  $\sigma$  is in W(r) if all its edges belong to W(r)



 $W_0(r)$  is defined by setting  $\mathbf{m}_{\mathbf{w}} = \mathbf{0}$  for any witness w

$$W_0(r) \subseteq VR(r) \subseteq W_0(2r)$$

### Outline

Describing a Shape through Persistence Pairs

> From a Point Cloud to a Filtered Simplicial Complex

# Thank you

**Ulderico Fugacci** 

TU Kaiserslautern, Dept. of Computer Science