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Persistent Homology

Image from 
[Ghrist 2008]

Persistent homology allows for 
describing the changes in the shape of an evolving object

In a Nutshell:

Σ 
1

Σ 
2

Σ 
3

Σ 
4

Σ 
5

Σ 
6

Σ 
7



An Evolving Notion:

Actually, this coincides with persistent homology in degree 0

1990

Frosini

Persistent Homology

Image from [Frosini 1992]

Size Functions:
✦ Estimation of natural pseudo-distance 

between shapes endowed with a function f
✦ Tracking of the connected components of a 

shape along its evolution induced by f



1990

Frosini

1994

Delfinado, 
Edelsbrunner

✦ Introduction of the notion of 
filtration 

✦ De facto computation of 
persistence pairs

Incremental Algorithm for Betti Numbers:

Image from [Delfinado, Edelsbrunner 1995]

Persistent Homology
An Evolving Notion:



Homology from Finite Approximations:
✦ Extrapolation of the homology of a metric 

space from a finite point-set approximation
✦ Introduction of persistent Betti numbers 

Image from [Biasotti et al. 2008]
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1994

Delfinado, 
Edelsbrunner

1999

Robins

Image from [Robins 1999]

Persistent Homology
An Evolving Notion:



Image from [Edelsbrunner et al. 2002]

1990

Frosini

1994

Delfinado, 
Edelsbrunner

1999

Robins

2002

Edelsbrunner, 
Letscher, 

Zomorodian

Topological Persistence:
✦ Introduction and algebraic formulation of 

the notion of persistent homology
✦ Description of an algorithm for computing 

persistent homology

Persistent Homology
An Evolving Notion:



Persistent Homology
A Twofold Purpose:

Shape Description
✦ Which is the shape of a given data?

Shape Comparison
✦ Given two data, do they have the same shape?



Shape Description

Persistent homology allows for the retrieval of the ”actual” homological information of a data

✦ Which is the shape of a given data?

Point Cloud Dataset Topological Nature of the 
“Underlying” Shape

Images from 
[Bauer 2015]



Shape Description
✦ Which is the shape of a given data?

Noisy Dataset Relevant Homological 
Information

Persistent homology allows for the retrieval of the ”actual” homological information of a data

Image from [Dey et al. 2008]



Shape Description

Persistence Pairs:

The core information of persistent homology is given by the persistence pairs

A persistence pair (p, q) is an element in {0, … , m} × ({0, … ,m} ∪ {∞}) such that p < q
representing a homological class that is born at step p and dies at step q

Given a filtration   Σ0 ⊆ Σ1 ⊆ … ⊆ Σm ,

⊆

Σ0 Σ1 Σ2 Σ3

⊆ ⊆
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Shape Description

Persistence Pairs:

The core information of persistent homology is given by the persistence pairs

A persistence pair (p, q) is an element in {0, … , m} × ({0, … ,m} ∪ {∞}) such that p < q
representing a homological class that is born at step p and dies at step q

Given a filtration   Σ0 ⊆ Σ1 ⊆ … ⊆ Σm ,

⊆

Σ0 Σ1 Σ2 Σ3

⊆ ⊆

(2, ∞) essential pair



⊆⊆ ⊆

✦ Persistence diagrams [Edelsbrunner, Harer 2008]

✦ k-triangles [Edelsbrunner et al. 2002]

✦ Half-open intervals [Edelsbrunner et al. 2002]

Given a filtered simplicial complex Σ,

Persistent pairs of Σ can be visualized through:

✦ Persistence landscapes [Bubenik 2015]
✦ Corner points and lines [Frosini, Landi 2001]

✦ Barcodes [Carlsson et al. 2005; Ghrist 2008]

Shape Description
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Shape Description
Barcodes:

⊆

Σ0 Σ1 Σ2 Σ3

⊆ ⊆

H0

H1

0 1 2 3 ∞

Persistence pairs are represented as intervals in R



Shape Description

Persistence pairs are represented 
as points in R2

Persistence Diagrams:

0

1

2

3

∞

1 2 3 ∞

H0 H1 (2, ∞)
(2, 3)

(0, ∞)
(0, 1)

Formally, a persistence diagram is a multiset
✦ Points are endowed with multiplicity

birth

de
at

h



Shape Description
Persistence Diagrams:

0

1

2

3

∞

1 2 3 ∞

H0 H1 (2, ∞)
(2, 3)

(0, ∞)
(0, 1)

Formally, a persistence diagram is a multiset
✦ Points are endowed with multiplicity

birth

de
at

h

Persistence pairs are represented 
as points in R × (R ∪ {∞})



Shape Description
3 ∞210

3 ∞210

3

∞

2

1

Barcodes and Persistence Diagrams 
encode equivalent information

Both tools visually represent the   
lifespan of the homology classes:

✦ Barcode: length of the intervals

✦ Persistence Diagram: distance from 
the diagonal

  



Shape Description

A visualization can be easily 
“translated” in the other one:

Barcodes and Persistence Diagrams encode equivalent information

3 ∞210

3

∞

2

1

[p, ∞)

[p, q]

(p, ∞)

(p, q)



Shape Comparison
✦ Do they have the same shape?



Shape Comparison
✦ Do they have the same shape?

In Practice? In Theory?
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✦ Do they have the same shape?

In Practice? In Theory?

They are homeomorphic



Shape Comparison
✦ Do they have the same shape?



Shape Comparison
✦ Do they have the same shape?

In Practice? In Theory?



Shape Comparison
✦ Do they have the same shape?

In Practice? In Theory?

They are not homeomorphic



Shape Comparison

It is possible to compare two shapes by comparing their homology groups 



Shape Comparison

Differently from homology, persistent homology provides 
a notion of “shape” closer to our everyday perception

It is possible to compare two shapes by comparing their homology groups 



Shape Comparison

Differently from homology, persistent homology provides 
a notion of “shape” closer to our everyday perception

It is possible to compare two shapes by comparing their homology groups 

PER
SIST

ENC
E PA

IRS

Need for a notion of distance between sets of persistence pairs



Shape Comparison
Distances between Persistence Diagrams:
Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

X
Y Image from [Rieck 2016]

[Cohen-Steiner et al. 2007]
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✦ Bottleneck distance

Wasserstein distance

Hausdorff distance



Shape Comparison
Distances between Persistence Diagrams:
Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)
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Hausdorff distance

Image from [Rieck 2016]

[Cohen-Steiner et al. 2007]



✦ Bottleneck distance
✦ Wasserstein distance
✦ Hausdorff distance

Shape Comparison
Distances between Persistence Diagrams:
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Shape Comparison
Distances between Persistence Diagrams:
Let X, Y be two persistence diagrams (points of the main diagonal are included with infinite multiplicity)

X
Y

✦ Bottleneck distance
✦ Wasserstein distance
✦ Hausdorff distance

Image from [Rieck 2016]

[Cohen-Steiner et al. 2007]

Stability: 
Similar shapes have similar persistence diagrams?
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From a Point Cloud To a Complex
Point Cloud Datasets:

We represent these unorganized, large-size and high-dimensional data 
through simplicial complexes 

values of attributes 
attached to each point

actual geometric   
position

Coordinates

More and more, data consist of point clouds:
✦ finite set of points V in Rd  (more generally, embedded in a metric space)



Various techniques can lead to
✦ simplicial complex
✦ filtered simplicial complex

From a Point Cloud To a Complex



Various techniques can lead to
✦ simplicial complex
✦ filtered simplicial complex

From a Point Cloud To a Complex

Vertex-based Filtration:

1 2

3
F : V ! N                     induces a filtration on Σ



Various techniques can lead to
✦ simplicial complex
✦ filtered simplicial complex

From a Point Cloud To a Complex

Vertex-based Filtration:

1 2

3

3 3 3

2

F : V ! N

⌃p := {� 2 ⌃ |F (�)  p}

F (�) := max

v2�
{F (v)}

                     induces a filtration on Σ

✦   

✦   



Various techniques can lead to
✦ simplicial complex
✦ filtered simplicial complex

From a Point Cloud To a Complex

Σ0 Σ1 Σ2 Σ4Σ3

Multi-scale Representation:



✦ Delaunay triangulations
• Voronoi diagrams

✦ Čech complexes
✦ Vietoris-Rips complexes
✦ Alpha-shapes
✦ Witness complexes

From a Point Cloud To a Complex

References:
H. Edelsbrunner, Algorithms in Combinatorial Geometry, 1987

H. Edelsbrunner, Geometry and Topology for Mesh Generation, 2001

Standard Constructions:



From a Point Cloud To a Complex

Output Dimension

Delaunay triangulation Simplicial Complex d

Čech complex Filtered Simplicial 
Complex Arbitrary  (up to |V|-1)

Vietoris-Rips complex Filtered Simplicial 
Complex Arbitrary  (up to |V|-1)

Alpha-shapes Filtered Simplicial 
Complex d

Witness complexes Filtered Simplicial 
Complex Arbitrary  (up to |V|-1)

Given a finite set of points V in Rd :



From a Point Cloud To a Complex

Nerve Complex

Abstract Simplicial Complex

Two Fundamental Notions:



From a Point Cloud To a Complex

An abstract simplicial complex Σ on V is a 
collection of finite subsets of V such that:
✦  if τ ∈ Σ , σ ⊆ τ, then σ ∈ Σ 

Given a finite set V,

V
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From a Point Cloud To a Complex

An abstract simplicial complex Σ on V is a 
collection of finite subsets of V such that:
✦  if τ ∈ Σ , σ ⊆ τ, then σ ∈ Σ 

Given a finite set V,

✦ Any simplicial complex is an abstract simplicial complex on the set of 
its vertices

✦ Any abstract simplicial complex admits a geometrical realization in Rn

Properties:

V



Given a finite collection S of closed sets in Rd, 
the nerve of S is the abstract simplicial complex 

generated by the non-empty common intersections 

From a Point Cloud To a Complex
Nerve Complex:

Nrv(S) := {� ✓ S |
\

� 6= ;}

Formally,



Given a finite collection S of closed sets in Rd, 
the nerve of S is the abstract simplicial complex 

generated by the non-empty common intersections 

From a Point Cloud To a Complex
Nerve Complex:

Nrv(S) := {� ✓ S |
\

� 6= ;}

Formally,



From a Point Cloud To a Complex
Nerve Theorem:

Let S be a finite collection of closed, convex sets in Rd

Then, the nerve of S and the union of the sets in S have the same homotopy type 

Same Homotopy Type

Isomorphic Homology



Delaunay Triangulation

Delaunay Triangulation is a classic notion in Computational Geometry:
✦ Producing a “nice” triangulation of V

• free of long and skinny triangles

✦ Named after Boris Delaunay for his work on this topic from 1934
✦ Originally defined for sets of points in a plane

Given a finite set of points V in R2,



Delaunay Triangulation

Convex Hull of V:

Given a finite set of points V in R2,

The smallest convex subset CH(V) of R2 
containing all the points of V

Images from [De Floriani 2003]



Delaunay Triangulation

Convex Hull of V:

A 2-dimensional simplicial complex Σ(V) such that:
✦ The domain of Σ is CH(V)
✦ The 0-simplices of Σ are the points in V

Triangulation of V:

Given a finite set of points V in R2,

The smallest convex subset CH(V) of R2 
containing all the points of V

Images from [De Floriani 2003]



Delaunay Triangulation
Definition:

A Delaunay triangulation is a triangulation Del(V) of V such that:
 the circumcircle of any triangle does not contain any point of V in its interior

Images from [De Floriani 2003]



Uniqueness: If V is in general position, then Del(V) is unique

Delaunay Triangulation

For d=2, 
no four or more 

points are co-circular
V in general 

position

A finite set of points V in Rd is in general position if
no d+2 of the points lie on a common (d − 1)-sphere



Delaunay Triangulation
Voronoi Region:

Images from [De Floriani 2003]

The Voronoi region of u in V is the set of points of R2 for which u is the closest 

RV (u) = {x 2 Rd | d(x, u)  d(x, v), v 2 V }

The Voronoi diagram is the collection Vor(V) 
of the Voronoi regions of the points of V

Voronoi Diagram: u

✦ Any Voronoi region is a convex closed subset of R2 
✦ A Voronoi region is not necessarily bounded



Delaunay Triangulation
Duality Property:

 If V is in general position, then 
the Delaunay triangulation coincides with the nerve of the Voronoi diagram

Images from [De Floriani 2003]

Del(V ) = {� ✓ V |
\

u2�

RV (u) 6= ;}

✦ Every point u of V corresponds to a Voronoi region RV(u) 

✦ Every triangle t of Del(V) correspond to a vertex in Vor(V) 

✦ Every edge e=(u,v) in Del(V) corresponds to an edge 
shared by the two Voronoi regions RV(u) and RV(v)

u

v

et



Delaunay Triangulation
Algorithms:

✦ Two-step algorithms:
• Computation of an arbitrary triangulation Σ’ 
• Optimization of Σ’ to produce a Delaunay triangulation 

✦ Incremental algorithms [Guibas, Stolfi 1983; Watson 1981]: 
• Modification of an existing Delaunay triangulation while adding 

a new vertex at a time
✦ Divide-and-conquer algorithms [Shamos 1978; Lee, Schacter 1980]: 

• Recursive partition of the point set into two halves 
• Merging of the computed partial solutions 

✦ Sweep-line algorithms [Fortune 1989]: 
• Step-wise construction of a Delaunay triangulation while moving 

a sweep-line in the plane 



Delaunay Triangulation
Watson’s Algorithm:

 Let Vi be a subset of V and let u be a point in V\Vi

Images from [De Floriani 2003]

A Delaunay triangulation is computed by incrementally 
adding a single point to an existing Delaunay triangulation 

Output: 
Del(Vi+1), a Delaunay triangulation of Vi+1:=Vi ∪ {u}

Input: 
Del(Vi), a Delaunay triangulation of Vi

u



Delaunay Triangulation
Watson’s Algorithm:

Images from [De Floriani 2003]

The influence region Ru of a point u is the region in the plane formed by the 
union of the triangles in Del(Vi) whose circumcircle contains u in its interior

u

The influence polygon Pu of u is the polygon 
formed by the edges of the triangles 

of Del(Vi) which bound Ru 



Delaunay Triangulation
Watson’s Algorithm:

Images from [De Floriani 2003]

uu

✦ Step 1: deletion of the triangles of Del(Vi) forming the influence region Ru

✦ Step 2: re-triangulation of Ru by joining u to the vertices of                    
              the influence polygon Pu



Delaunay Triangulation
Watson’s Algorithm:

Let ni =|Vi|
✦ Detection of a triangle σ of Del(Vi) containing the new point u: O(ni) in 

the worst case 
✦ Detection of the triangles forming the region of influence through a 

breadth-first search: O(|Ru|)
✦ Re-triangulation of Pu is in O(|Pu|)

✦ Inserting a point u in a triangulation with ni vertices: O(ni) in the worst 
case

✦ Inserting all points of V: O(n2) in the worst case, where n =|V|



Čech Complex
Given a finite set of points V in Rd, let us consider:



Čech Complex
Given a finite set of points V in Rd, let us consider:

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls ru Bu(r)



           In practice, infeasible construction 

Čech Complex

The Čech complex Čech(r) of V of 
radius r is the nerve of S

Čech(r) := {� ✓ V |
\

u2�

Bu(r) 6= ;}

Given a finite set of points V in Rd, let us consider:

✦ Bu(r), the closed ball with center u ∈ V and radius r
✦ S, the collection of these balls 

Bu(r)u r



Vietoris-Rips Complex
Given a finite set of points V in Rd,

ru

V R(r) := {� ✓ V | d(u, v)  2r, 8u, v 2 �}

The Vietoris-Rips complex VR(r) of V and r 
is the abstract simplicial complex consisting 

of all subsets of diameter at most 2r 

Formally,



Vietoris-Rips Complex
Properties:

✦  

VR(r) is completely determined by its 1-skeleton
i.e., the graph G of its vertices and its edges

Čech(r) ✓ V R(r) ✓ Čech(
p
2r)

√2 rrr

⊆ ⊆

Čech(r) Čech(
p
2r)V R(r)



Vietoris-Rips Complex
Properties:

✦  

✦ VR(r) is completely determined by its 1-skeleton
• i.e., the graph G of its vertices and its edges

Čech(r) ✓ V R(r) ✓ Čech(
p
2r)

G VR(r)



Vietoris-Rips Complex

✦ 1-Skeleton Computation: 
• Exact     ( O(|V|2) time complexity )
• Approximate
• Randomized
• Landmarking

✦ Vietoris-Rips Expansion: 
• Inductive
• Incremental
• Maximal

Computation:

Two-step Algorithm:

Input: finite set of points V in Rd and a real positive number r 
Output: the Vietoris-Rips complex VR(r)

[Zomorodian 2010]



✦ 1-Skeleton Computation: 
• Exact     ( O(|V|2) time complexity )
• Approximate
• Randomized
• Landmarking

✦ Vietoris-Rips Expansion: 
• Inductive
• Incremental
• Maximal

Vietoris-Rips Complex
Computation:

Two-step Algorithm:

Input: finite set of points V in Rd and a real positive number r 
Output: the Vietoris-Rips complex VR(r)

[Zomorodian 2010]



INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ
LOWER-NBRS(G, u)

return {v ∈ V | u > v , (u, v) ∈ E}

Inductive VR expansion:

Vietoris-Rips Complex

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

1

2

3

4



Inductive VR expansion:

Vietoris-Rips Complex

INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

LOWER-NBRS(G, u)
return {v ∈ V | u > v , (u, v) ∈ E}

𝜎 = (1, 2)

N = { }
1

2

3

4



Inductive VR expansion:

Vietoris-Rips Complex

INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

LOWER-NBRS(G, u)
return {v ∈ V | u > v , (u, v) ∈ E}

𝜎 = (2, 3)

N = {1}
1

2

3

4



INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ
LOWER-NBRS(G, u)

return {v ∈ V | u > v , (u, v) ∈ E}

Inductive VR expansion:

Vietoris-Rips Complex

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)
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INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ
LOWER-NBRS(G, u)

return {v ∈ V | u > v , (u, v) ∈ E}

𝜎 = (3, 4)

N = {1}
1

2

3

4

Inductive VR expansion:

Vietoris-Rips Complex

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)



INDUCTIVE-VR(G, k)
Σ = V ∪ E
for i=1 to k

foreach i-simplex 𝜎 ∈ Σ

N = ∩u ∈ 𝜎 LOWER-NBRS(G, u)
foreach v ∈ N
Σ = Σ ∪ { 𝜎 ∪ {v}}

return Σ
LOWER-NBRS(G, u)

return {v ∈ V | u > v , (u, v) ∈ E}

Inductive VR expansion:

Vietoris-Rips Complex

Input: the 1-skeleton G=(V, E) of VR(r)
Output: the k-skeleton Σ of the Vietoris-Rips complex VR(r)

1

2

3

4



From a Point Cloud To a Complex

Delaunay triangulation

Čech complex/VR complex

Bounded 
Dimension

Trivial 
Homology

“Real” 
Homology

High Dimension
Large Size



Alpha-shape
Given a finite set of points V in general position of Rd, let us consider:

Alpha(r) := {� ✓ V |
\

u2�

Au(r) 6= ;}

The Alpha-shape Alpha(r) of V of 
radius r is the nerve of S

Formally,

Alpha(r) ✓ Čech(r)Au(r) ✓ Bu(r)

✦ Au(r) := Bu(r) ∩ RV(u)  
• intersection of the closed ball of radius r 

centered in u and the Voronoi region of u
✦ S, the collection of these convex sets 

Image from [Edelsbrunner, Harer 2010]



Witness Complex

Retrieving the topological information does not require to consider all the input points

Motivation:

✦ Landmarks: 
selected points

✦ Witnesses: 
remaining points

Images from [de Silva, Carlsson 2004]



Witness Complex

The witness complex W(r) of radius r is defined by:
✦ u is in W(r) if u is a landmark 

✦ (u,v) is in W(r) if there exists a witness w such that

✦ the i-simplex 𝜎 is in W(r) if all its edges belong to W(r)

For each witness w, 
mw : = the distance of w from the 2nd closest landmark

Images from [de Silva, Carlsson 2004]

max{d(u,w), d(v, w)}  mw + r

W0(r) ✓ V R(r) ✓ W0(2r)

W0(r) is defined by setting mw = 0 for any witness w

u

v

w



Outline

From a Point Cloud to a 
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Describing a Shape 
through Persistence Pairs



Thank you       

Ulderico Fugacci
TU Kaiserslautern, Dept. of Computer Science


