
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Topological Data Analysis through Homology and
Discrete Morse Theory

by

Ulderico Fugacci

Theses Series DIBRIS-TH-2017-04

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

Topological Data Analysis through Homology
and Discrete Morse Theory

by

Ulderico Fugacci

December, 2017

Dottorato in Informatica
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi

Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science (S.S.D. INF/01)

Submitted by Ulderico Fugacci
DIBRIS, Univ. di Genova

ulderico.fugacci@dibris.unige.it

Date of submission: 19 February 2016

Title: Topological Data Analysis through Homology and Discrete Morse Theory

Advisors:
Leila De Floriani

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli studi di Genova
deflo@disi.unige.it

Maria Evelina Rossi
Dipartimento di Matematica

Università degli studi di Genova
rossim@dima.unige.it

Ext. Reviewers:
Claudia Landi

Dipartimento di Scienze e Metodi dell’Ingegneria
Università di Modena e Reggio Emilia
claudia.landi@unimore.it

Heike Leitte
Interdisciplinary Center for Scientific Computing

Heidelberg University
heike.leitte@iwr.uni-heidelberg.de

Abstract

Two of the most relevant tools in topological data analysis are homology and
discrete Morse theory. Homology and its more recent development, persistent
homology, provide topological information on an object including connectiv-
ity and the classification of loops, handles and voids within the space. Dis-
crete Morse theory, on the other hand, is a powerful analysis tool providing
a morphology- and homology-consistent model of the space to be analyzed.
The major objectives of this thesis are to investigate homology and discrete
Morse theory, to understand and reveal relations between them and with other
analysis tools, massively exploit them to efficiently retrieve relevant topo-
logical information from large-size and high-dimensional data. Since we are
dealing with complexes defined by very large point clouds, our work has been
developed considering and introducing compact and efficient data structures.

A first contribution of the thesis is an in-depth investigation and a complete
classification of the techniques described in the literature to algorithmically
build a (discrete) Morse complex and of the algorithms for computing ho-
mology and persistent homology. Another contribution of our work concerns
the relationships between the construction of a discrete Morse gradient and
the efficient computation of standard and persistent homology of a simplicial
complex. A theoretical comparison of different methods based on homology-
preserving operators to build a discrete Morse gradient and the use of compact
data structures for representing the complex and the discrete Morse gradient
lead us to develop an algorithm to efficiently compute standard and persistent
homology of a simplicial complex.

Another way to efficiently compute homology is by considering a hierarchi-
cal representation of the complex. To this aim, we introduce a general and
theoretically-consistent definition of a hierarchical, multi-resolution model.
We develop homology-preserving versions of this model for cell and simpli-
cial complexes and we exploit their expressive power to efficiently compute
homology and homology generators at various degrees of resolution.

We have also considered discrete Morse theory as a tool for studying the mor-
phology of an object through its segmentation as a Morse-Smale complex.
Working with real data, the presence of noise often requires a morphological
simplification of the dataset in order to capture only the relevant topological
information. Unfortunately, the simplification process can generate topolog-

3

ically-inconsistent representations of the object. In this work, we introduce
a new simplification process that prevents inconsistencies and we define a
compact data structure for representing a discrete Morse complex improving
the efficiency of such a process.

Relationships between homology and discrete Morse theory have also been
investigated from a combinatorial and algebraic point of view. By deeply
exploiting a correspondence between simplicial complexes and ideals in the
polynomial ring, we establish a first relation between the existence of a per-
fect Morse function for a simplicial complex and the algebraic property of
admitting a splitting for the corresponding polynomial ideal.

4

Acknowledgments

I wish to thank some people who played a fundamental role during my Ph.D. studies.

Maria Evelina Rossi for her wisdom in introducing me to the computer science world.
Leila De Floriani for making me fall in love with that world.
Emanuela De Negri for her constant willingness to listen.
Paola Magillo and Lidija Čomić for their patience.
Federico Ciccio Iuricich because he has been "simplicially" essential.
Davide Bolognini for being a theoretically-consistent eclectic.
Sara Scaramuccia because we are homologically equivalent.
Riccardo Fellegara for his "stellar" help.

This work has been partially supported by the National Science Foundation under Grant
Number IIS-1116747.

5

Contents

Introduction 11

Chapter 1 Background Notions 15

1.1 Simplicial and cell complexes . 15

1.1.1 Simplicial complexes . 15

1.1.2 Cell complexes and regular grids 20

1.2 Simplicial and persistent homology . 23

1.2.1 Simplicial homology . 23

1.2.2 Persistent homology . 34

1.3 Morse and discrete Morse theory . 36

1.3.1 Morse theory . 36

1.3.2 Piecewise linear Morse theory and watershed transform 38

1.3.3 Discrete Morse theory . 40

Chapter 2 State of the Art 45

2.1 Data structures for simplicial complexes 45

2.2 Multi-resolution models . 51

2.3 Computing simplicial homology . 53

2.3.1 Classification . 53

2.3.2 Direct optimizations . 55

2.3.3 Coarsening and pruning approaches 56

2.3.4 Distributed approaches . 66

2.3.5 Annotation-based approaches 72

2.3.6 Software tools for homology and persistent homology computation 76

2.4 Algorithms rooted in Morse and discrete Morse theories 77

7

2.4.1 Classification . 77

2.4.2 Algorithms based on piecewise linear Morse theory and on wa-
tershed transform . 78

2.4.3 Algorithms rooted in discrete Morse theory 82

2.4.4 Simplification of Morse and Morse-Smale complexes 89

2.5 Concluding remarks . 90

Chapter 3 Homology Computation through Discrete Morse Theory 91

3.1 Discrete Morse complexes through reductions and coreductions 92

3.1.1 Using coreduction sequences or reduction sequences 92

3.1.2 Equivalence of reduction and coreduction sequences 94

3.1.3 Interleaving reductions and coreductions 98

3.2 Encoding of a simplicial complex endowed with a gradient vector field . . 99

3.2.1 Compact encoding of a gradient vector field 100

3.3 A coreduction-based algorithm for computing discrete Morse complexes . 101

3.3.1 Construction of a (filtered) gradient vector field 102

3.3.2 Extraction of the boundary maps 107

3.4 Experimental results . 108

3.4.1 Computing the discrete Morse complex 109

3.4.2 Computing persistent homology 111

3.5 Concluding remarks . 112

Chapter 4 Homology Computation through Multi-resolution Models 115

4.1 Topological operators for cell and simplicial complexes 115

4.1.1 Operators for cell complexes . 116

4.1.2 Operators for simplicial complexes 123

4.2 A general multi-resolution model . 127

4.2.1 Operators . 127

4.2.2 Multi-resolution cell complexes 129

4.2.3 Selective refinement extraction 131

4.3 Cellular homology computation through a multi-resolution model 133

4.3.1 The Hierarchical Cell Complex (HCC) 134

8

4.3.2 The Homology-preserving Hierarchical Cell Complex (HHCC) . 136

4.3.3 Homology computation through an HHCC 140

4.4 Simplicial homology computation through a multi-resolution model . . . 146

4.4.1 The Hierarchical Simplicial Complex (HSC) 146

4.4.2 The Homology-preserving Hierarchical Simplicial Complex
(HHSC) . 148

4.4.3 Homology computation through an HHSC 150

4.5 Concluding remarks . 153

Chapter 5 Topologically-consistent Simplification of Discrete Morse Complexes155

5.1 Representing discrete Morse complexes 157

5.2 Simplifying discrete Morse complexes 160

5.3 Solving topological inconsistencies . 163

5.3.1 Shared V-paths and the remove operator 163

5.3.2 Shared V-path disambiguation algorithm 165

5.4 Experimental results . 169

5.5 Concluding remarks . 172

Chapter 6 Relations between Perfect Discrete Morse Functions and Betti Split-
tings 175

6.1 Background . 176

6.2 Perfect discrete Morse functions and homological splittings 183

6.3 Perfect discrete Morse functions and Betti splittings 186

6.4 Concluding remarks . 188

Concluding Remarks 189

Appendix A 193

List of Figures 197

List of Tables 203

Bibliography 205

9

Introduction

The aim of this thesis is the study and the development of structural methods in topolog-
ical data analysis. Nowadays, one of the most exciting and pressing challenge in several
scientific disciplines is to face data of high dimensions, often unorganized and of large
size. In order to overcome the limitations affecting the geometrical methods in the anal-
ysis of high-dimensional datasets, in our work we have chosen to consider topological
tools. These methods allow to describe data independently from geometrical coordinates
and to retrieve just the crucial information about their shape. Point-cloud information
leads to the construction of irregularly distributed and unorganized data. In order to treat
a large class of data which could include also the last cited one, we have elected sim-
plicial complexes as the privileged mathematical structure to represent their connectivity
and shape. Further, high dimensionality and large size require to develop new theoretical
approaches to retrieve the topological information and the use of efficient and compact
data structures.

The two main tools used in our work to reach these goals are homology and discrete Morse
theory. In the thesis, we have deeply exploited them to efficiently retrieve topological in-
formation of a shape and we have investigated the connections between these two notions.
Homology is a topological invariant which gives a basic description of the shape of an ob-
ject by counting and geometrically retrieving its "holes", allowing to extract information
such as the number of the connected components, the independent non-bounding cycles
and the generalizations in higher dimensions of these notions. Recently, a generalization
of homology, called persistent homology, has been proposed [EH08]. Persistent homol-
ogy is able to manage a "sequence" of complexes representing an object which evolves
with respect to a parameter. In a nutshell, persistent homology describes the changes in
homology that occur during the evolution of the considered object. This property makes
persistent homology a very flexible tool which plays a crucial role in several application
domains.
Discrete Morse theory is a combinatorial version of the more general and continuous
Morse theory [For98]. It enables to analyze the topology of an object by studying func-
tions defined on it. Discrete Morse theory is relevant for different applications, roughly
subdivided in two classes: applications devoted to homological analysis and segmenta-
tion of shapes into regions of influence of the critical points of a function defined on them.

The first contribution in our investigation is a complete and systematic study of the cur-
rent state of the art (Chapter 2). We classify and compare also experimentally several

11

topological data structures for representing a simplicial complex revealing that, in order
to manage objects in high dimensions, a data structure explicitly encoding only a subset of
the entities of a complex is required [FID14, FIDon]. Our work investigates several tech-
niques to speed up the computation of homology and persistent homology with respect
to the standard but time-consuming method to retrieve them. According to the strategy
they adopt, we classify these approaches in: direct optimizations, coarsening and pruning
approaches, distributed approaches and methods based on annotations. Our analysis of
the state of the art finally involves Morse theory. We discuss various discretizations of
this theory and we describe different methods to extract a Morse complex indicating them
as boundary-based, region-growing, watershed and Forman-based approaches. Further,
we discuss about the encoding of a Morse complex and we focus our attention on the
Forman’s discrete Morse theory describing constrained and unconstrained algorithms to
retrieve a Forman gradient [DFIM15, DFI15].

Two key contributions of this thesis are related to the development of techniques to effi-
ciently compute homological information of a simplicial complex. One is based on dis-
crete Morse theory, the other on a multi-resolution model.

The first strategy adopted is based on the efficient construction of a discrete Morse gra-
dient in order to build a Morse complex from which quickly retrieve homology and per-
sistent homology of a simplicial complex (Chapter 3). We discuss about the use of two
homology-preserving operators (reduction and coreduction) and about the possibility of
combine them in order to build a valid gradient on a simplicial complex. Our compar-
ison leads to prove a theoretical equivalence between the capabilities of these different
methods. Based on these considerations, we develop an algorithm to efficiently compute
homological information of a simplicial complex based on the compact IA∗ data struc-
ture. The equivalence between the use of various operators gives us the possibility to
choose coreductions as privileged operators since they can be better performed by the
chosen data structure. At the same time, the use of this data structure implies the need of
the development of a new encoding of the gradient that reveals to be very compact. The
developed algorithm, based on a partition of the input simplicial complex, produces sat-
isfying experimental results compared with similar approaches proposed in the literature
[FID14, FIDon].

A new developed strategy to efficiently retrieve homology is based on the use of a multi-
resolution model (Chapter 4). In order to reach this goal, we work on an in-depth study
of the topological operators for modifying cell and simplicial complexes and we develop
the definition of a general geometry-based multi-resolution model. We specialize this
general model in the context of cellular and simplicial complexes. Further, focusing our
attention on homology-preserving modifications, we propose, for each specialization, an
efficient encoding of the model and algorithms for updating homology and homology
generators. The homology-preserving multi-resolution model for cell complexes has been
implemented and experimental results reveal its efficiency in the homology computation
and in the retrieval of homology generators at various levels of detail [ČomićDIF14].

12

Driven by the desire of further improvements in persistent homology computation and of
handle real datasets describing scalar fields, we study some problems affecting the sim-
plification of a discrete Morse complex (Chapter 5). Open issues concerning this topic
include the lack of a compact data structure able to efficiently perform simplification pro-
cess and the presence of topological inconsistencies for simplifications involving com-
plexes of dimension 3 or greater [GRSW13]. In our work, we solve both these problems
by proposing a new data structure for Morse complexes able to combine compactness and
efficiency during the simplification step and a new simplification algorithm that has been
proven to be topologically consistent. The algorithm is based on the use of the remove
operator ensuring the topological consistence and on a preprocessing step in which all the
gradient configurations leading to topological ambiguities are eliminated [IFD15].

Finally, connections between homology and discrete Morse theory are investigated from
an algebraic point of view (Chapter 6). The theoretical bridge allowing to relate topology
and algebra is given by the Stanley-Reisner correspondence [Rei76, Sta75]. This tool
allows us to "translate", in both directions, geometrical and topological properties of a
simplicial complex into combinatorial and algebraic properties of a monomial squarefree
ideal of the polynomial ring. Exploiting this tool, we prove that, under suitable assump-
tions, admitting for a simplicial complex a perfect Morse function ensures the existence of
particular homology-consistent decompositions, called homological and Betti splittings,
for the correspondent polynomial ideal [BFRDon].

13

Chapter 1

Background Notions

The main objective of this thesis is the analysis of discretized shapes through topological
tools. In this chapter, we introduce some background notions useful to handle these tools.
Simplicial and cell complexes, defined in Section 1.1, are the mathematical structures we
use to represent discretized shapes. In Section 1.2, we introduce the notions of homol-
ogy and of persistent homology which are the main topological descriptors considered in
our work. Finally, in Section 1.3, we describe Morse and discrete Morse theory which
represent powerful tools to efficiently manage the topological information of a shape.

1.1 Simplicial and cell complexes

In the literature, several notions have been introduced to formally describe and to compu-
tationally work with geometrical objects. Simplicial complexes represent the mathemat-
ical tool we use for discretizing shapes. This choice is mainly due to their capability in
representing also shapes originated from unorganized data and their combinatorial prop-
erties that allow to efficiently encode them.

In this section, we introduce the notion of simplicial complex [Mun84]. Other classes of
complexes we are going to present in this section are regular grids [ČDMI14, KMM04],
frequently used in the literature for representing regular data, and cell complexes [LW69,
Mas91, Hat02] that, thanks to their generality, are mainly used to prove theoretical results
for a wide class of complexes.

1.1.1 Simplicial complexes

Simplicial complexes are built upon the concept of simplex. Our presentation is based on
[Mun84].

Definition 1.1. A set {v0, v1, ..., vk} of points in the n-dimensional real space Rn is said

15

to be geometrically independent, if for any real values ti, equations

k∑
i=0

ti = 0 and
k∑
i=0

tivi = 0

imply that t0 = t1 = · · · = tk = 0.

The condition of geometric independence for the set {v0, v1, ..., vk} is equivalent to re-
quiring that vectors v1− v0, ..., vk − v0 are linearly independent over R. This condition is
therefore also equivalent to affine independence, i.e., to the request that the smallest affine
subspace of Rn containing the points v0, ..., vk has dimension k. Two distinct points in Rn

form a geometrically independent set, as do three non-collinear points, four non-coplanar
points, etc.

Definition 1.2. Let V = {v0, v1, ..., vk} be a geometrically independent set in Rn. We
define the k-simplex σ spanned by v0, v1, ..., vk to be the convex hull of V , i.e., the set of
all points x ∈ Rn such that

x =
k∑
i=0

tivi where
k∑
i=0

ti = 1

and ti ≥ 0 for all i.

The numbers ti are uniquely determined by x; they are called barycentric coordinates of
x in σ with respect to v0, v1, ..., vn.

For example a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a
3-simplex is a tetrahedron, as shown in Figure 1.1.

Figure 1.1: Examples of simplices of dimension 0, 1, 2, 3.

The points v0, v1, ..., vk spanning a simplex σ are called the vertices of σ; k is said to be
the dimension of σ, and it is denoted as dimσ. Any simplex σ′ spanned by a subset of V
is called a face of σ. Conversely, σ is called a coface of σ′.

Definition 1.3. A simplicial complex Σ in Rn is a collection of simplices in Rn such that

1. every face of a simplex of Σ is in Σ;

2. the intersection of any two simplices of Σ is a face of each of them.

16

(a) (b)

Figure 1.2: A simplicial complex (a) and a collection of simplices that is not a simplicial
complex (b).

Remark 1.4. It is easy to show that condition 2. is equivalent to

2’. every pair of distinct simplices of Σ have disjoint interiors.

We define the dimension of a simplicial complex Σ in Rn, denoted as dim Σ, to be the
supremum of the dimensions of the simplices of Σ. We call maximal simplices the el-
ements σ of Σ such that dimσ = dim Σ. We say that a simplex of Σ is a top simplex
if it is not a proper face of any simplex of Σ. Clearly, a maximal simplex is also a top
simplex but the converse, in general, does not hold. A simplicial d-complex is a simplicial
complex in which all the top simplices are maximal of dimension d. A subcollection of Σ
that is itself a simplicial complex is called a subcomplex of Σ.

Simplicial complexes are a natural choice to represent geometric objects computationally
since these latter can be represented by an enumeration of the top simplices. The knowl-
edge of the top simplices of a complex uniquely determines the whole complex.

Now, we endow a simplicial complex Σ with a topological structure.

Definition 1.5. Let |Σ| be the subset of Rn defined as the union of the simplices of Σ. Let
us give to each simplex σ the subspace topology τσ with respect to the Euclidean space
En. Then, we define a topology τΣ on |Σ| by saying that a subset A of |Σ| is a closed set
of (|Σ|, τΣ) if and only if A ∩ σ is a closed set of (σ, τσ), for each σ in Σ. It is easy to
see that τΣ is a topology on |Σ|, since this collection of closed sets is closed under finite
unions and arbitrary intersections. The space |Σ| is called the underlying space of Σ, or
the polytope of Σ.

Remark 1.6. The topology τΣ of |Σ| is finer than the topology τ|Σ| that |Σ| inherits as a
subspace of Rn. If A is a closed set of |Σ| with respect to the subspace topology τ|Σ|, then
A = B∩|Σ| for some closed set B in En. This implies that B∩σ is a closed set of (σ, τσ)
for each σ and, so, B ∩ |Σ| = A is a closed set of (|Σ|, τΣ).

The two topologies τΣ and τ|Σ| are different in general.

17

Example 1.7. Let Σ be the collection of all 1-simplices in R of the form [m,m+1], where
m is an integer different from 0, along with all the simplices of the form [1/(n+ 1), 1/n]
for n a positive integer, along with all the faces of these simplices. Then, Σ is a complex
whose underlying space is equal to R as a set, but not as a topological space. For instance,
the set of the points of the form 1/n is a closed set of (|Σ|, τΣ), but not of E = (|Σ|, τ|Σ|).

Remark 1.8. If Σ is a finite collection of simplices, τΣ = τ|Σ|. Let us suppose Σ is finite
and A is a closed set of (|Σ|, τΣ). Then, A ∩ σ is a closed set of (σ, τσ) and, hence, it is
a closed set of En. Since A is the union of finitely many sets A ∩ σ, the set A is also a
closed set of En and, so, τ|Σ| is finer than τΣ.
The above argument does not work if Σ is an infinite collection of simplices.

One of the reasons to give to a polytope the topological structure just defined is the follow-
ing characterization of continuous functions. For a polytope provided with the subspace
topology the following proposition does not hold in general.

Proposition 1.9. Let Σ be a simplicial complex and let (X, τ) be a topological space. A
function f from (|Σ|, τΣ) to (X, τ) is continuous if and only if f |σ is continuous for each
σ ∈ Σ.

Proof. Since σ is a subspace of |Σ|, if f is continuous, so is f |σ. Conversely, assume
that each map f |σ is continuous. If A is a closed set of (X, τ), then, for each σ ∈ Σ,
f−1(A) ∩ σ = (f |σ)−1(A), which is a closed set of (σ, τσ) by continuity of f |σ. Thus,
f−1(A) is a closed set of (|Σ|, τΣ).

Definition 1.10. Let Σ, Σ′ be two simplicial complexes. A function f : Σ→ Σ′ is called
a simplicial map if for every simplex σ = v0v1 · · · vk in Σ, f(σ) = f(v0)f(v1) · · · f(vk)
is a simplex in Σ′. The restriction fV of f to the set of vertices of Σ is called a vertex map.

From now on, we will consider only finite simplicial complexes simply referring to them
as simplicial complexes. The motivation is to endow simplicial complexes with the topo-
logical structure better reflecting our intuition and to be able to computationally handle a
simplicial complex.

Topological manifolds represent a relevant class of topological spaces. In the following,
we denote a simplicial complex whose polytope is a manifold as a (simplicial) mesh.
Simplicial meshes of dimension 2 and 3 will be called triangle and tetrahedral meshes,
respectively. Please refer to Section 6.1 for a discussion about topological manifolds and
simplicial complexes.

In some application domains such as combinatorics, it is useful to work with simplicial
complexes without considering their geometric realization. The notion of abstract simpli-
cial complex meets this need.

Definition 1.11. An abstract simplicial complex Σ on a set V is a collection of finite
subsets of V , called simplices, such that if τ ∈ Σ, σ ⊆ τ , then σ ∈ Σ.

18

According to the standard definition of simplicial complex, the elements of V are called
vertices of Σ, the dimension of a simplex τ is one less than the number of its elements
and the largest dimension of the simplices in Σ is called dimension of Σ. Each nonempty
subset σ of a simplex τ ∈ Σ is called a face of τ and, conversely, τ is a coface of σ.

The two notions of simplicial complex and abstract simplicial complex are equivalent.
It always possible, given an abstract simplicial complex Σ, to endow Σ with a geometric
realization or, given a simplicial complex, to forget its geometry thus obtaining an abstract
simplicial complex [Mun84].

1.1.1.1 Classes of simplicial complexes

Scientific data sets are usually in the form of point cloud data, characterized by a set of
points in an ambient space, for instance datasets from particle physics, electoral votes or
data for weather forecast [RL14]. Many types of simplicial complexes can be used to con-
nect the data points. Other datasets are networks, which can be sensor networks [DG07b]
or collaboration or social networks [MSS06, HMR09, KSSM13, CH13]. In such cases,
each node of the network represents a vertex of the simplicial complex and the k-simplices
are created by semantic relations inferred by the application: a joint work among k ac-
tors in collaborative networks, in social networks an k-simplex would represent a set of
k actors mutually connected. Sensor networks provide parameters for building a simpli-
cial complex: knowing the working radius of each sensor a simplex is defined among all
the sensors mutually included in the circle generated by the working radius of each other
[DG07b].

Much work has been done for building simplicial complexes from point clouds embedded
in high-dimensional metric spaces. α-shapes [EKS83], combinatorial Delaunay triangu-
lations [CDEG10], Čech complexes [Hat02], Vietoris-Rips complexes [Zom10a], witness
complexes [DC04, De 03, GO08] and graph induced complexes [DFW13] are all exam-
ples of those complexes. Given a finite set of points P in a metric space (such as the
Euclidean space) and a positive real number ε, a subset of k + 1 points in P determines a
k-simplex in a Čech complex if and only if such points lie in a ball of radius ε/2. A Čech
complex is one of the most classical ways to build a simplicial complex starting from a
point cloud, but its construction is infeasible in practice. Vietoris-Rips (VR) complexes,
approximation of the Čech complexes, have been widely used [Zom10a].

Definition 1.12. Given a finite set of points P in a metric space (X, d) and a positive pa-
rameter ε, the Vietoris-Rips (VR) complex associated with P and ε is the abstract simplicial
complex on P defined as

Vε(P) := {σ ⊆ P | d(u, v) ≤ ε, ∀u 6= v ∈ σ}

An example of VR complex is depicted in Figure 1.3. Informally, chosen a set P and a
positive number ε, the associated VR complex consists of a simplex for every subset of
points of P that has diameter at most ε.
Also VR complexes are often too large to handle even in dimension as low as three. The

19

(a) (b)

Figure 1.3: (a) A finite set of points P . (b) The Vietoris-Rips complex associated with P
choosing as ε the depicted distance.

witness complex [DC04, De 03, GO08] and the graph induced complex [DFW13] try to
overcome this problem through a subsampling strategy.

1.1.2 Cell complexes and regular grids

Simplicial complexes are not the unique class of mathematical objects useful to discretize
a shape. In this subsection, we briefly introduce the notions of cell complexes and regular
grids.

1.1.2.1 Cell and CW complexes

Cell and CW complexes are two different ways to generalize the class of the simplicial
complexes. Even if their relevance in applications is more limited, their generality is very
useful for proving theoretical results for a large class of complexes. For a more detailed
presentation of cell and CW complexes, see [LW69, Mas91, Hat02].

Let Rk be the k-dimensional Euclidean space. We denote as Dk := {x ∈ Rk : |x| ≤ 1}
the k-dimensional closed disk and as int(Dk) and fr(Dk) its interior and its boundary (or
frontier), respectively.

A k-cell is a set p homeomorphic to int(Dk). Moreover, k is said to be the dimension of
p and denoted dim p.

Definition 1.13. A Hausdorff space Γ ⊆ Rn is called a cell complex if Γ is a disjoint
union of cells such that:

• for each k-cell p of Γ, there exists a continuous function Φp : Dk → Γ, such that its
restriction Φp|int(Dk) : int(Dk)→ p to int(Dk) is a homeomorphism;

• Φp(fr(D
k)) ⊆ Γ(k−1), where Γ(i), called the i-skeleton of Γ, is the union of the cells

of Γ with dimension less than or equal to i.

20

Intuitively, a cell complex is just a collection of cells homeomorphic to a open disks suit-
ably "glued" together. We define the dimension of the cell complex Γ to be the supremum
of the dimensions of its cells.

The notion of CW complex allows endowing a cell complex with nice topological fea-
tures. The letter C stands for closure finiteness and W stands for weak topology.

Definition 1.14. A CW complex Γ is a cell complex satisfying the following two proper-
ties:

• Closure finiteness: for each k-cell p of Γ, Φp(fr(D
k)) is contained in the union of a

finite number of cells of Γ(k−1);

• Weak topology: Γ is endowed with the topology for which A ⊆ Γ is a closed set of
Γ if and only if, for all p ∈ Γ, A ∩ p is a closed set of p.

Properties in Definition 1.14 trivially hold if Γ is a finite cell complex. Since in our work
we only consider finite cell complexes, in the following we do not distinguish anymore
between the two notions and we use only the term cell complex.

Definition 1.15. A cell complex is called regular if, for each p ∈ Γ, Φp is bijective (or,
equivalently, a homeomorphism) on its image.

(a) (b)

Figure 1.4: (a) A regular cell complex of dimension 2. (b) A non regular cell complex of
dimension 2; 0-cell p represents a irregular face for 1-cell q.

As depicted in Figure 1.4, regularity ensures that no identification occurs on the boundary
of each cell. Given a cell complex Γ, a cell p ∈ Γ is called (proper) face of a cell q ∈ Γ
if p is contained in fr(q). Conversely, q is called (proper) coface of the cell p. A k-cell
p of Γ which is face of a (k + 1)-cell q of Γ is called regular if the closure of Φ−1

q (p) is
homeomorphic to the k-dimensional closed disk Dk. Otherwise, p is called an irregular
face of q.
For k > 0, a k-cell p is said to be adjacent to a k-cell p′ if p and p′ share a (k − 1)-face.
Two 0-cells u and v are called adjacent if they are both faces of a same 1-cell.
The star and the link of a cell p are relevant subsets of a cell complex Γ useful to describe
the neighborhood of p. The star of a cell p of a cell complex Γ is the set of cells q ∈ Γ
which are cofaces of p and is denoted as starΓ p. The link of a cell p ∈ Γ, denoted as

21

linkΓ p, is the set of cells q ∈ Γ such that q is a face of a coface of p, and is not a coface of
p. Further, we define the closed star of a cell p ∈ Γ as the cell complex starΓ p obtained
by the union of starΓ p and linkΓ p.

Queries on a cell complex are often expressed in terms of the topological relations defined
by the adjacencies and incidences of its cells. Let Γ be a cell complex of dimension d and
let p be a i-cell of Γ.
We denote as

• boundary relation Ri,j(p), with 0 ≤ j < i, the set of j-cells in Γ that are faces of p;

• coboundary relation Ri,j(p), with i < j ≤ d, the set of j-cells in Γ that are cofaces
of p;

• adjacency relation Ri,i(p) the set of i-cells in Γ that are adjacent to p.

In the following, we will often denote as immediate the boundary relation Ri,i−1(p) and
the coboundary relation Ri,i+1(p).

1.1.2.2 Regular grids

Regular grids represent a specific subclass of cell complexes widely used for regularly
distributed data, such as digital images [ČDMI14, KMM04].

Figure 1.5: An example of 3-dimensional regular grid.

Definition 1.16. An axis-parallel k-dimensional hyper-cube η in Rn is the Cartesian prod-
uct of n closed intervals, where exactly k of them are non-degenerate with equal length,
i.e., η = {(x1, . . . , xn) ∈ Rn |xi ∈ [ai, bi]}, where #{i | ai < bi} = k and, for such i,
bi − ai is constant. We say that hyper-cube η is generated by intervals [ai, bi].

Usually, intervals have integer endpoints and unit length, i.e., ai ∈ Z, and bi = ai or
bi = ai + 1. Given a hyper-cube η, generated by intervals [ai, bi], i = 1, . . . n, any hyper-
cube η′ generated by intervals [a′i, b

′
i], with either a′i = ai and b′i = bi, or a′i = b′i = ai, or

a′i = b′i = bi, is called a face of η. Hyper-cube η′ is a proper face of η if η′ 6= η.

22

Definition 1.17. A regular (hyper-cubic) grid in Rn is a finite collectionH of hyper-cubes
of different dimensions, such that:

• for any hyper-cube η ∈ H , all hyper-cubes that are proper faces of η are in H;

• for any pair of hyper-cubes η1, η2 ∈ H , either η1∩η2 = ∅, or η1∩η2 is a hyper-cube
of H;

and the domain of H is a hyper-cube in Rn.

A 2D regular grid is also called a square grid, and a 3D regular grid a cubic grid.

1.2 Simplicial and persistent homology

For an object discretized through a complex, our interest is in defining a topological in-
variant which can describe the shape of the complex itself. Homology and persistent
homology are powerful tools in shape analysis, since they provide invariants for shape
description and characterization. These notions can be defined for any discretization of
a geometric shape such as cell complexes, simplicial complexes or regular grids. For the
sake of simplicity, in Subsection 1.2.1 and Subsection 1.2.2, we will introduce the no-
tions of homology and persistent homology just for a simplicial complex. We refer to
[Mas91, Hat02] for the cellular case.

1.2.1 Simplicial homology

Homology is a fundamental tool in algebraic topology. As shown in Figure 1.6, intuitively
homology provides global quantitative and qualitative information about a shape, such as
the number of its connected components, the number of holes and tunnels.

Figure 1.6: A triple torus and its homology groups. The exponent of each group has
a geometrical meaning. The exponent 1 in the 0th homology groups implies that the
shape is path-connected, the first homology group Z6 describes that the triple torus has
six independent non-bounding cycles, finally, the exponent 1 of the second homology
group tells us that the surface surrounds a void.

23

In order to formally define the notion of simplicial homology, we need to introduce chain
complexes [Rot70], which are mathematical structures able to encode in an algebraic
structure the topological nature of a shape.

1.2.1.1 Chain complexes and homology

Definition 1.18. A chain complex C∗ is a pair (Ck, dk)k∈Z

· · · // Ck+1

dk+1 // Ck
dk // Ck−1

// · · ·

where Ck are Abelian groups and dk group homomorphisms such that dk dk+1 = 0 for all
k.
This latter condition is equivalent to requiring Im dk+1 ⊆ ker dk. We will call Ck the
chain group of degree k and dk the differential map.

A chain map is a function which relates two chain complexes and preserves their algebraic
structure.

Definition 1.19. Let A∗ = (Ak, d
A
k)k∈Z and B∗ = (Bk, d

B
k)k∈Z be two chain complexes.

A chain map f : A∗ → B∗ is a collection of homomorphisms of groups f = (fk : Ak →
Bk)k∈Z satisfying for every k the differential condition fk−1d

A
k = dBk fk. In other words,

it is required that the following diagrams commutes.

Ak
dAk //

fk
��

Ak−1

fk−1

��
Bk

dBk

// Bk−1

Now, we introduce the notion of homology for a chain complex.

Definition 1.20. Let C∗ be a chain complex.
We denote:

• Zk(C∗) := ker dk ⊆ Ck the group of k-cycles of C∗;

• Bk(C∗) := Im dk+1 ⊆ Ck the group of k-boundaries of C∗.

The condition of chain complex allows us to define

Hk(C∗) := Zk(C∗)/Bk(C∗)

called the kth homology group of C∗.

Definition 1.21. A chain complex C∗ = (Ck, dk)k∈Z is called exact if, for each k ∈ Z,
Im dk+1 = ker dk.

From a mathematical point of view, the homology groups of C∗ therefore measure "how
far" the chain complex C∗ is from being exact.

24

1.2.1.2 Homology groups of simplicial complexes

The goal of this subsection is to associate with each simplicial complex a non-negative
chain complex (i.e., all its Abelian groups of degree k < 0 are null) in order to compute
its homology.

Definition 1.22. Let σ be a simplex. Two orderings of its vertex set are equivalent if they
differ by an even permutation. If dimσ > 0, the orderings of the vertices of σ fall into
two equivalence classes. Each of these classes is called an orientation of σ.1 An oriented
simplex is a simplex σ together with an orientation of σ.

If points v0, ..., vk are geometrically independent, we shall use the symbol v0 · · · vk to de-
note the simplex they span, and the symbol [v0, ..., vk] to denote the oriented simplex con-
sisting of simplex v0 · · · vk and the equivalence class of the specific ordering (v0, ..., vk).
When clear from the context, we will use a single symbol such as σ to denote either a
simplex or an oriented simplex. By abuse of notation, if σ and σ′ are opposite orientation
of the same simplex, we often write σ′ = −σ.

Definition 1.23. Let Σ be a simplicial complex. Having selected an orientation for each k-
simplex σ of Σ, we denote as Ck(Σ) the free Abelian group with basis the set of oriented
k-simplices of Σ and is called the group of (oriented) k-chains of Σ. If k < 0 or k >
dim Σ, Ck(Σ) denotes the trivial group.

In other words, each element c of Ck(Σ) is called a k-chain of Σ, and it is a finite linear
combination with integer coefficients of oriented k-simplices, i.e.,

c =
∑
i

niσi

where ni ∈ Z and σi is an oriented k-simplex of Σ.

Group C0(Σ) differs from the others, since it has a natural basis (because a 0-simplex has
only one orientation). Group Ck(Σ), with k > 0, has no natural basis; one must orient the
k-simplices of Σ in some arbitrary fashion in order to obtain a basis.

Definition 1.24. If σ = [v0, ..., vk] is an oriented simplex with k > 0, a homomorphism

∂k : Ck(Σ)→ Ck−1(Σ)

called the boundary operator (or, boundary map) is defined as

∂k(σ) = ∂k[v0, ..., vk] =
k∑
i=0

(−1)i [v0, ..., v̂i, ..., vk], (1.24.1)

where v̂i means that vertex vi is not present. Since Ck(Σ) is the trivial group for k < 0,
operator ∂k is the trivial homomorphism for k ≤ 0.

It is easy to prove the following proposition.
1If σ is a 0-simplex, then there is only one class and hence only one orientation.

25

Figure 1.7: Three examples that intuitively show how the boundary operator acts.

Proposition 1.25. The chain map ∂∗ is well-defined and, for each k > 0, ∂k ∂k+1 = 0.

In accordance with the definitions given in Subsection 1.2.1.1, the construction of Ck(Σ)
and Proposition 1.25 allow us to associate chain complex C∗(Σ) = (Ck(Σ), ∂k)k∈N with
simplicial complex Σ. By attaching a chain complex to a simplicial complex, we can
define the homology of a simplicial complex.

Definition 1.26. Let Σ be a simplicial complex and let C∗(Σ) = (Ck(Σ), ∂k)k∈N be the
chain complex associated with Σ. Denote by:

• Zk(Σ) := Zk(C∗(Σ)) = ker ∂k ⊆ Ck(Σ) the group of k-cycles of Σ;

• Bk(Σ) := Bk(C∗(Σ)) = Im ∂k+1 ⊆ Ck(Σ) the group of k-boundaries of Σ;

• Hk(Σ) := Hk(C∗(Σ)) = Zk(Σ)/Bk(Σ) the kth simplicial homology group of Σ.

Figure 1.8: A simplicial complex with two highlighted 1-cycles. The green one is also
a boundary and so it is null in homology. The orange one instead is not a boundary and
provides a non-null contribution in the first homology. This is in accord with the intuitive
idea that homology detects holes.

The following theorem allows us to better characterize the homology groups of a finite
simplicial complex.

26

Theorem 1.27. (Structure for finitely generated Abelian groups, [Art91]). For G a
finitely generated Abelian group,

G ∼= Zs ⊕
p⊕
i=1

Zλi

where s ≥ 0, λi integers greater than 1 s.t., for i = 1, ..., p− 1, λi+1 | λi.
Furthermore the numbers s, λ1, . . . , λp are uniquely determined by G.

If Σ is finite, then, by Theorem 1.27, the homology groups can be expressed as

Hk(Σ) ∼= Zβk < c1, · · · , cβk > ⊕Zλ1 < c′1 > ⊕ · · · ⊕ Zλpk < c′pk >

with λi+1 | λi. We call βk the kth Betti number of Σ,
⊕pk

i=1 Zλi the torsion part of Hk(Σ)
and c1, · · · , cβk , c′1, · · · , c′pk the generators of Hk(Σ).

Figure 1.9: A simplicial complex Σ in which a set of generators of H1(Σ) has been
highlighted. The number of generators of H1(Σ) coincides with β1 = 10.

The homology of a simplicial complex Σ has also a geometric meaning. It is one of
the most important tools to obtain topological invariants. Homeomorphic topological
spaces have the same homology, while the converse is false in general. For instance, there
is a topological space, called Poincaré homology sphere, which is not homeomorphic
to the sphere but it has the same homology. In spite of this limit, homology provides
many global quantitative and qualitative information about a shape. For each k, the kth

Betti number βk measures the number of independent, non-bounding, k-cycles in Σ. In
dimension 0, the Betti number counts the number connected components of the complex,
in dimension 1, its tunnels and its holes, in dimension 2, the shells surrounding voids or
cavities, and so on (see, for instance, Figure 1.6).

The torsion part of a simplicial complex Σ has not such a clear geometric meaning. Intu-
itively, the presence of torsion reveals that the shape has a "twisted" behavior (see Figure
1.10 for an example). In spite of this, the torsion part is relevant only for shapes embed-
ded in a high-dimensional space [MTCW10]. It can be proven (see [AH35], Chapter X)
that, for simplicial complexes embeddable in R3, each homology group is free and, thus,
the torsion part is null.

Given a simplicial complex Σ and an arbitrary Abelian group G, we can consider the kth

homology group with coefficients in G of Σ as Hk(Σ;G) := Hk(C∗(Σ) ⊗Z G), where

27

Figure 1.10: A Klein bottle Σ forcedly embedded in R3. Its homology groups are
H0(Σ) = Z, H1(Σ) = Z⊕ Z2 and H2(Σ) = Z.

⊗Z denotes the tensor product of Abelian groups [Hat02]. If we take as G a field F,
C∗(Σ) ⊗Z F is the chain complex whose chain groups Ck(Σ) ⊗Z F are just the vector
spaces over F generated by the k-simplices of Σ and so, for each k, Hk(Σ;F) ∼= Fβk
and, in particular, it has no torsion part. Moreover, taking F = Z2, the homomorphisms
∂k ⊗Z Z2 are the boundary maps ∂k of Σ considered modulo 2. As mentioned above,
since up to embedding dimension 3 homology groups with coefficients in Z are free of
the torsion part, homology with integer coefficient and homology with coefficients in Z2

are equivalent for simplicial complexes embeddable in R3.

Simplicial homology is not the unique homology theory. The notion of homology can be
defined for any topological space through the singular homology theory. A topological
space |Σ| can be implicitly associated with a simplicial complex Σ. So, for a simplicial
complex we can define both simplicial homology and singular homology. Fortunately, it
can be proven (see [Hat02]) that the two homological theories are equivalent for simplicial
complexes. This result also proves that simplicial homology is well-defined and it does
not depend on the orientation given to the simplices of a simplicial complex. Further-
more, this ensures that simplicial homology gives topological invariants, i.e., homeomor-
phic simplicial complexes have the same (up to isomorphism) homology groups. In spite
of this, homology does not completely characterize the shape of a simplicial complex. It
is not true, in general, that simplicial complexes with isomorphic homology groups are
homeomorphic, or just homotopy equivalent.

Another topological invariant for simplicial complexes is the Euler characteristic. Al-
though it represents a weaker topological invariant with respect to the homology, the
Euler characteristic of a simplicial complex can be immediately retrieved.

Definition 1.28. Let Σ be a d-dimensional simplicial complex and let nk be the number
of k-simplices in Σ. We define as Euler characteristic of Σ the number

χ(Σ) :=
d∑

k=0

(−1)k nk

The following result shows that χ(Σ) can be defined purely in terms of homology.

28

Proposition 1.29. (Euler-Poincaré formula, [Hat02]). Let Σ be a d-dimensional sim-
plicial complex and let βk be the kth Betti number of Σ. We have

χ(Σ) =
d∑

k=0

(−1)k βk

Since homology is a topological invariant, the Euler-Poincaré formula ensures that the Eu-
ler characteristic is a topological invariant too. Analogously to the homology, the notion
of Euler characteristic and the Euler-Poincaré formula can be immediately generalized to
the framework of the cell complexes.

Reduced and relative homology
In the remainder of the work, we will make use of the notion of reduced and relative ho-
mology.

In order to define reduced homology of a given simplicial complex Σ, we have to intro-
duce the augmented chain complex of Σ denoted as C̃∗(Σ). It consists of the following
chain complex

· · ·
∂k+2 // Ck+1(Σ)

∂k+1 // Ck(Σ)
∂k // · · · ∂2 // C1(Σ)

∂1 // C0(Σ) ε // Z // 0

where ε
(∑

i nivi
)

=
∑

i ni, for each ni ∈ Z and each vi vertex of Σ.

Definition 1.30. We define the kth reduced homology group of Σ as the kth homology
group H̃k(Σ) := Hk(C̃∗(Σ)) of the augmented chain complex C̃∗(Σ).

The knowledge of the reduced homology of a simplicial complex Σ allows to easily re-
trieve standard homology of Σ, and the converse is still true. It is immediate to show
that

Hk(Σ) ∼=

{
H̃k(Σ)⊕ Z if k = 0

H̃k(Σ) otherwise

Intuitively, the reduced homology of a simplicial complex Σ can be considered as the ho-
mology of Σ by regarding the empty set ∅ as a simplex in Σ of dimension −1.

Let Σ be a simplicial complex, Σ′ be a subcomplex of Σ. For each k, we denote with
Ck(Σ,Σ

′) the quotient groupCk(Σ)/Ck(Σ
′). Thus, k-chains of Σ′ are trivial inCk(Σ,Σ′).

Since the boundary map ∂k : Ck(Σ) → Ck−1(Σ) takes Ck(Σ′) to Ck−1(Σ′)), it induces a
quotient boundary map ∂k : Ck(Σ,Σ

′) → Ck−1(Σ,Σ′). Relation ∂k−1∂k = 0 holds for
these boundary maps, since it holds before passing to quotient groups. So, Ck(Σ,Σ′) is a
chain complex.

Definition 1.31. According to the above notation, the kth homology group of the chain
complexCk(Σ,Σ′) is called the kth relative homology groupHk(Σ,Σ

′) of the pair (Σ,Σ′).

Roughly speaking, relative homology groups of the pair (Σ,Σ′) represent the homology
groups of the complex obtained considering Σ and collapsing to a single point its sub-
complex Σ′.

29

1.2.1.3 Simplicial homology computation through Smith Normal Form reduction

For an algorithmic computation of simplicial homology, we have to consider only finite
simplicial complexes. In this context, we can describe the boundary maps ∂k through
matrices, called boundary matrices. The classical way to compute homology is to reduce
the boundary matrices by using an algorithm similar to the Gauss reduction, called Smith
Normal Form (SNF) reduction [EH10, Mun84, Ago05]. This reduction algorithm allows
computing homology with coefficients in any principal ideal domain (PID) [Art91]. For
the sake of brevity, in the following, we just consider the case of integer coefficients.

The goal of the Smith Normal Form reduction is to compute directly the quotient between
the subgroups ker ∂k and Im ∂k+1 that defines the homology:

Hk(Σ) = ker ∂k/ Im ∂k+1

In order to compute Hk(Σ), we need to be able to determine the two subgroups and also
to perform the quotient between them.

Smith Normal Form reduction
Smith Normal Form reduction is an algorithm which allows to reduce in a canonical form
any matrix, not necessary a square one, with entries in Z or in any other PID. Given such
a matrix, it is always possible by a sort of similarity transformation to reduce it in the
following form:

N =

Id 0 0
0 λ 0
0 0 0


where

λ =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λp


is a diagonal matrix with λ1, ..., λp in the diagonal s.t. λi > 1 and λi+1|λi. N is said to be
in Smith Normal Form.

A similar form can be obtained by modifying rows and columns of the matrix. However,
attention must be paid to perform "legal" modifications, i.e., changes that can be undone
in our coefficient space Z. For example, a multiplication of the elements of a row by 2 is
illegal, since to undo it the row should be divided by 2 but 1/2 6∈ Z. Hence, the elementary
rows operations are:

• exchange row i and j,

• multiply a row i by -1,

30

• replace a row i by row i + q row j, where q ∈ Z and i 6= j.

The same elementary operations are defined for the columns of the matrix.

The algorithm starts finding a non null entry of the matrix, moving it on the upper left
corner and improving it until it divides all entries of its row and its column. Thus, it is
possible to zero out the rest of the first row and first column and recursively apply the
same procedure to the submatrix obtained by removing the first column and first row.

Computing homology through Smith Normal Form reduction
Smith Normal reduction can be used to retrieve homology groups of an arbitrary simpli-
cial complex Σ. The first step for computing the homology groups of Σ is to express each
boundary map ∂k through the matrix Dk. Suppose we have chosen, for each k, a basis of
Ck(Σ) given by {σk1 , ..., σknk

}. Since the boundary operator is completely determined by
the image elements of the canonical basis, map ∂k can be encoded as the matrix:

Dk =


σk1 · · · σknk

σk−1
1

...
... · · · ηkj,i · · ·

σk−1
nk−1

...


where ηkj,i represents the coefficient of σk−1

j in ∂k(ski).
Then, in order to obtain the kth homology group Hk(Σ) of Σ, we have to compute Nk+1

and Nk representing the Smith Normal form of ∂k+1 and of ∂k, respectively. After these
reductions, the homology group Hk(Σ) can be easily retrieved. Let q be the number of
null columns inNk, t the rank of the matrixNk+1 and p the number of the elements greater
than 1 in the diagonal of Nk+1. With this notation, the kth homology group of Σ is

Hk(Σ) ∼= Zq−t ⊕ Zλ1 ⊕ · · · ⊕ Zλp

In order to retrieve also the generators of the kth homology group of Σ, we need to modify
the bases in whichDk andDk+1 are expressed, according to the changes performed during
the execution of the Smith Normal Form reduction. The modifications are resumed in
Table 1.1.

To easily perform the quotient between ker ∂k and Im ∂k+1, we need that the elements
representing a basis of Im ∂k+1 are a subcollection of the elements of the basis obtained
for ker ∂k. In order to reach this purpose, we can adopt the following strategy.
First of all, matrix Dk+1, expressed in terms of the canonical bases, is reduced to Nk+1.
Then, we represent boundary map ∂k through the matrix expressed by choosing as basis
of Ck(Σ) the one obtained inNk+1 and as basis of Ck−1(Σ) the canonical one. Finally, we
reduce this matrix in its Smith normal form and we are able to easily perform the quotient
ker ∂k/ Im ∂k+1 obtaining its generators.

Example 1.32. Let Σ be the simplicial complex of dimension 2 represented in Figure
1.11. We want to compute its homology groups.

31

Operation on the matrix Operation on the (k−1)-basis Operation on the k-basis
rowi ↔ rowj σk−1

i ↔ σk−1
j -

rowi ← −rowi σk−1
i ← −σk−1

i -
rowi ← rowi + q rowj σk−1

j ← σk−1
j − q σk−1

i -
coli ↔ colj - σki ↔ σkj
coli ← −coli - σki ← −σki
coli ← coli + q colj - σki ← σki + q σkj

Table 1.1: Modifications of (k−1)- and k-bases in which matrixDk is expressed required
by the operations performed during the SNF reduction.

Figure 1.11: The simplicial complex Σ used in Example 1.32.

Let us start with H2(Σ). Since ∂3 is the null map, we have that Im ∂3 is equal to the trivial
group 0. Let us consider the matrix D2 encoding the boundary map ∂2 in terms of the
2-simplices of Σ which represent the canonical basis of C2(Σ).

D2 =



[v0, v1, v2] [v0, v2, v3]

[v0, v1] 1 0
[v0, v2] −1 1
[v0, v3] 0 −1
[v0, v4] 0 0
[v1, v2] 1 0
[v2, v3] 0 1
[v3, v4] 0 0


Then, we reduceD2 to its Smith Normal formN2, keeping track of the changes performed
on the bases.

N2 =



[v0, v1, v2] [v0, v2, v3]

[v1,v2]−[v0,v2]+[v0,v1] 1 0
[v2,v3]−[v0,v3]+[v0,v2] 0 1

[v0, v3] 0 0
[v0, v4] 0 0
[v1, v2] 0 0
[v2, v3] 0 0
[v3, v4] 0 0


32

Since N2 has no null columns, ker ∂2 = 0. So, H2(Σ) = ker ∂2/ Im ∂3 = 0.

To compute the first homology group of Σ, we have to find a basis for ker ∂1 which
includes the elements of the basis of Im ∂2. To reach this goal, we express the boundary
maps ∂1 in terms of the just obtained basis of C1(Σ) and of the canonical basis of C0(Σ).

D′1 =



[v0, v3] [v0, v4] [v1, v2] [v2, v3] [v3, v4] [v1,v2]−[v0,v2]+[v0,v1] [v2,v3]−[v0,v3]+[v0,v2]

v0 −1 −1 0 0 0 0 0
v1 0 0 −1 0 0 0 0
v2 0 0 1 −1 0 0 0
v3 1 0 0 1 −1 0 0
v4 0 1 0 0 1 0 0


Performing the Smith Normal Form reduction of D′1, we obtain N1.

N1 =



−[v0,v3] −[v1,v2] −[v2,v3] [v0,v3]−[v0,v4] [v3,v4]−[v0,v4]+[v0,v3] [v1,v2]−[v0,v2]+[v0,v1] [v2,v3]−[v0,v3]+[v0,v2]

v0−v3 1 0 0 0 0 0 0
v1−v2 0 1 0 0 0 0 0
v2−v3 0 0 1 0 0 0 0
v3−v4 0 0 0 1 0 0 0

v4 0 0 0 0 0 0 0


Now, we are ready to retrieve H1(Σ).
We can easily read from N1 and N2 that

{
[v3, v4]− [v0, v4] + [v0, v3], [v1, v2]− [v0, v2] +

[v0, v1], [v2, v3]− [v0, v3] + [v0, v2]
}

and
{

[v1, v2]− [v0, v2] + [v0, v1], [v2, v3]− [v0, v3] +

[v0, v2]
}

represent a basis for ker ∂1 and for Im ∂2, respectively.
So, H1(Σ) = ker ∂1/ Im ∂2 = Z and it is generated by [v3, v4]− [v0, v4] + [v0, v3].

Let us conclude with H0(Σ).
As showed by N1,

{
v0 − v3, v1 − v2, v2 − v3, v3 − v4

}
represents a basis for Im ∂1. Fur-

thermore, since the boundary map ∂0 is the null map, the basis
{
v0 − v3, v1 − v2, v2 −

v3, v3 − v4, v4

}
of C0(Σ) can be considered as a basis for ker ∂0.

So, H0(Σ) = ker ∂0/ Im ∂1 = Z and it is generated by v4.

Notice that the retrieved homology groups actually reflect the shape of the simplicial
complex Σ allowing to understand that Σ is connected and to reveal the presence of a
1-dimensional hole bounded by the simplices [v3, v4], [v0, v4], [v0, v3].

Smith Normal Form reduction provides the homology groups of any finite simplicial com-
plex but, the time complexity of the SNF algorithm is super-cubical in the number of the
simplices of the simplicial complex [Sto96]. Another well-known problem is the appear-
ance of large integers during reduction [HM91]. These limitations lead to consider other
methods to compute homology in an efficient way.

33

1.2.2 Persistent homology

Persistent homology [EH08, Zom05, Ghr08] is an important tool in topological shape
analysis, which aims at overcoming intrinsic limitations of classical homology by allow-
ing for a multi-scale approach to shape description. The possibility to retrieve essen-
tial topological features of a shape has led to an increasing development of persistent
homology in various application domains, such as, for instance, biology and chemistry
[CBK09, DAE+08, WAB+05, MTCW10], astrophysics [vdWVE+11], automatic classi-
fication of images [BEK10, CIDZ08, CFG06], sensor networks [DG07b, DG07a] and
social networks [HMR09, CH13].

Similarly to standard homology, persistent homology can be defined for chain and cell
complexes. In spite of this, it is typically introduced for simplicial complexes.

Definition 1.33. Let Σ be a simplicial complex. A filtration F of Σ is a finite sequence
of subcomplexes {Σm | 0 ≤ m ≤M} of Σ such that ∅ = Σ0 ⊆ Σ1 ⊆ · · · ⊆ ΣM = Σ.

An example of filtration is depicted in Figure 1.12.

The associated chain filtration F (Σ) is defined as the following sequence of chain com-
plexes

C∗(Σ
1)

i1 // C∗(Σ
2)

i2 // . . .
iM−1// C∗(Σ

M)

where maps im arise from inclusion of groups.

For p ∈ N, we denote as im,p : C∗(Σ
m) → C∗(Σ

m+p) the composition im+p−1 · . . . · im
when it makes sense.

Definition 1.34. The p-persistent kth homology group of Σm is defined to be

Hp
k(Σm) :=

im,p(Zk(Σ
m))

im,p(Zk(Σm)) ∩Bk(Σm+p)

Informally, Hp
k(Σm) consists of the k-cycles included from Ck(Σ

m) into Ck(Σm+p) mod-
ulo boundaries.

Figure 1.12: An example of filtration F of a simplicial complex Σ. Betti numbers of
each simplicial complex of the filtration are reported. Persistent homology captures the
changes in the Betti numbers during the filtration.

Persistent homology provides more information about a shape than standard homology.
While homology captures cycles in a shape by factoring out the boundary cycles, persis-
tent homology allows the retrieval of cycles that are non-boundary elements in a certain

34

step of the filtration and that will turn into boundaries in some subsequent step. The per-
sistence of a cycle during the filtration gives quantitative information about the relevance
of the cycle itself for the shape. As much as standard homology, persistent homology can
be defined with coefficients in any Abelian group. Moreover, persistent homology with
coefficients in a PID can be computed using Smith Normal Form reduction [Zom05]. In
spite of this, as we will see in Section 2.3, it is usually computed by choosing a field as
coefficient group.

Multi-dimensional persistent homology
Recently, a generalization of classical persistent homology to more than one filtering vari-
able, called multi-dimensional persistent homology, has been introduced [CZ09, CSZ09].
While persistent homology captures the topology of a one-parameter family of increasing
shapes, multi-dimensional persistent homology allows to do it for a family of shapes pa-
rameterized along multiple scalar functions.
Multi-dimensional persistent homology is an extension of persistent homology motivated
by the fact that data analysis and comparison often involve the examination of properties
that are naturally described by multiple scalar values. In the multi-dimensional setting,
we have more directions along which the filtration varies, each induced by a different
scalar value. We consider a family of subcomplexes {Σm}, where now all indexes m
are given by several parameters, one for each filtering function. Indexes for the filtration
are then vectors rather than scalars. Inclusions of complexes in the multi-dimensional
filtration are now required only if two indexes are comparable according to a partial order
among the indexes, which is defined componentwise. Any two indexes are comparable
if they simultaneously are in all components. By defining the sum of indexes compo-
nentwise, we can say that, for an index p whose components are greater than or equal to
0, the multi-dimensional p-persistent kth homology group Hp

k(Σm) of Σm consists of the
k-cycles included from Ck(Σ

m) into Ck(Σm+p) modulo boundaries.
For multi-filtrations, the theory of multi-dimensional persistence homology shows that
no complete discrete invariant exists, and thus an incomplete invariant, called rank in-
variant, has been proposed [CZ09]. This latter keeps track of the number of persistence
classes surviving from one step of the multi-filtration to another, although it does not
determine completely the homology persistence module. For each homology degree k
and any pair of comparable indexes (m,m+ p), the inclusion of complexes between Σm

and Σm+p induces a linear map im,p between homology modules Hk(Σ
m) and Hk(Σ

m+p)
the rank invariant is the function ρk, which associates with any a pair of comparable in-
dexes (m,m+ p), the rank of the image of Hk(Σ

m) through map im,p as a submodule of
Hk(Σ

m+p).

Another notion to be mentioned is the so-called localized homology [CF08]. Similarly
to persistent homology, localized homology aims to overcome limitations of the standard
homology by distinguish between noise and relevant cycles generating homology. Specif-
ically, its purpose is actually to determine an optimal location of the homology generators
allowing to geometrically locate the topological features of a complex and measure them.

35

1.3 Morse and discrete Morse theory

Morse theory [Mat02, Mil63] studies the relationships between the topology of a shape
and the critical points of a real-valued smooth function defined on it. It has been recog-
nized as an important tool for shape analysis and understanding in many applications, in-
cluding physics, chemistry, medicine and geography. Morse theory is defined for smooth
functions, but recently a discrete counterpart has been proposed in an entirely combina-
torial setting by Robin Forman for cell complexes [For98, For02]. Discrete Morse theory
is the basis for computing Morse decompositions of discretized geometric shapes, and it
provides a tool for retrieving topological invariants, like homology and persistent homol-
ogy groups.

In this section, we introduce Morse theory in the smooth case, we review theoretical tools
at the basis of several algorithms in the literature for computing Morse decompositions
of shapes, namely piecewise linear Morse theory and watershed transform and, then, we
present discrete Morse theory.

1.3.1 Morse theory

As mentioned above, Morse theory [Mat02, Mil63] studies the relationships between the
topology of a smooth d-manifold M ⊆ Rn and the critical points of a C2-differentiable
real-valued function f defined on it.

Definition 1.35. Let f : M → R be a C2-differentiable function. A point p ∈M is called
critical point of f if and only if the gradient∇f of f vanishes on p, i.e.,∇f(p) = 0.
Moreover, the critical point p is denoted as non-degenerate critical point if the determi-
nant of the Hessian matrix Hessp(f) of the second-order partial derivatives of f , evalu-
ated in p, is not null.

The number of negative eigenvalues of Hessp(f) is called the index k of a critical point p
and p is called a k-saddle, with 0 ≤ k ≤ n. A 0-saddle is called a minimum and a d-saddle
a maximum. The corresponding eigenvectors define the directions in which function f is
decreasing.

Definition 1.36. Under the above assumptions, a function f : M → R is called a Morse
function if all its critical points are not degenerate.

As a consequence of the Morse Lemma [Mil63], each non-degenerate critical point is
isolated and, therefore, it has a neighborhood which does not contain other critical points.

An integral line of a function f is a maximal path everywhere tangent to the gradient of
f . An integral line follows the direction in which the function has the maximum growth.
An integral line, which connects a critical point p of index k to a critical point q of index
k + 1, is called a separatrix line. The integral lines cover the entire domain of f and they
form cells, each corresponding to a critical point.

36

(a) (b) (c) (d) (e) (f)

Figure 1.13: Red and blue triangles indicate maxima and minima. Green squares indicate
saddles. (a) The set of integral lines converging to a maximum and forming the (red)
descending cell. (b) The set of integral lines originating from a minimum and forming the
(yellow) ascending cell. The set of all the descending and ascending cells forming (c) the
descending Morse complex ΓD and (d) the ascending Morse complex ΓA. (e) Resulting
Morse-Smale complex and (f) 1-skeleton of the Morse-Smale complex.

Integral lines that converge to a critical point p of index k form a k-cell, called the de-
scending manifold of p. Integral lines that originate from a critical point p of index k
form a (d−k)-cell, called the ascending manifold of p. The descending [ascending] man-
ifolds are pairwise disjoint and partition the domain of M into cells, which form a cell
complex since the boundary of each cell is the union of lower-dimensional cells. The col-
lection of all the descending [ascending] manifolds form the descending Morse complex
ΓD [ascending Morse complex ΓA]. The two Morse complexes are mutually dual.

In the 2D case (see Figure 1.13), the integral lines converging to a maximum/saddle/min-
imum form a 2-cell/1-cell/0-cell of the descending Morse complex, respectively (see Fig-
ures 1.13 (a) and (c)). Dually, the integral lines originating from a minimum/saddle/max-
imum form a 2-cell/1-cell/0-cell of the ascending Morse complex, respectively (see Fig-
ures 1.13 (b) and (d)). In 3D, the set of integral lines converging to a maximum/2-
saddle/1-saddle/minimum form a 3-cell/ 2-cell/1-cell/0-cell of the descending Morse com-
plex, respectively. The dual situation happens in the ascending Morse complex.

A Morse function f is called a Morse-Smale function if and only if the descending and
ascending Morse complexes intersect transversally. The connected components of the
intersection of the descending and ascending cells decompose M into a Morse-Smale
(MS) complex, denoted ΓMS . If f is a Morse-Smale function, then there is no integral
line connecting two different critical points of f of the same index. Note that, in a d-
dimensional MS complex, each 1-saddle is connected to exactly two minima and each
(d−1)-saddle is connected to exactly two maxima, not necessarily distinct. The 1-skeleton
of the Morse-Smale complex, i.e., is the subcomplex composed of its 0-cells and 1-cells,
is often called the critical net.
The intersection of the descending and ascending Morse complexes of Figures 1.13 (c)
and (d) forms the Morse-Smale complex illustrated in Figure 1.13 (e). For each critical
point p, the descending and ascending cells of p intersect only at p. Thus, the 0-cells
of the Morse-Smale complex are the critical points. The 1-cells are the separatrix lines
connecting pairs of critical points. The distinctive feature of Morse-Smale cells is the
uniform gradient flow inside each of them.

37

1.3.2 Piecewise linear Morse theory and watershed transform

In this section, we discuss two theoretical tool for the actual computation of Morse and
Morse-Smale complexes for segmenting shapes discretized as simplicial complexes or
regular grids and endowed with a scalar field. Examples are intensity images, terrains,
volume data, etc. The approaches discussed here are based on piecewise linear Morse
theory and on the watershed transform. It has been shown in [VCY12] that the Morse-
Smale complex built on the discretization of a smooth function has not, in general, the
same structure as the "true" Morse-Smale complex of the original function.

1.3.2.1 Piecewise linear Morse theory

Piecewise linear Morse theory has been introduced by Banchoff [Ban67, Ban70] to extend
the results of smooth Morse theory to polyhedral surfaces, and, thus, triangulated ones
(see [BDF+08] for more details).

In this subsection, we denote as triangulated surface the graph of a real-valued function
f defined at the vertices of a triangle mesh Σ on the plane, interpolated through linear
interpolation. In order to ensure that critical points are isolated, function f is assumed to
have different values at every pair of vertices connected by an edge in Σ, i.e., no flat edges
are allowed [TIKU95].

Let us consider a vertex v, its star starΣ v, and the horizontal plane passing through v , as
illustrated in Figure 1.14. Vertex v is a local maximum or a local minimum if the plane
does not intersect starΣ v; it is regular if the plane cuts starΣ v) into two parts; it is a
saddle if the plane cuts starΣ v into k parts, with k ≥ 4. The saddle is simple if k = 4,
and multiple otherwise. The multiplicity of a saddle is equal to k/2−1. Note the piecewise
linear case includes isolated degenerate critical points, such as multiple saddles, that do
not occur in smooth Morse theory.

(a) (b) (c) (d)

Figure 1.14: Classification of a vertex according to Banchoff [Ban67]: (a) minimum, (b)
maximum, (c) regular, (d) simple saddle.

The characterization provided by Banchoff [Ban67] correctly detects critical points in
dimensions two and three, while a more complete characterization for higher-dimensional
spaces is based on Betti numbers (see [EHNP03]).

In [EHZ01, EHNP03], the notion of Quasi Morse-Smale (QMS) complex is introduced
as a piecewise linear counterpart of the Morse-Smale complex for triangle and tetrahedral

38

meshes. The idea behind a QMS, called simulation of differentiability, is that of extend-
ing the smooth notions to the piecewise linear case so as to guarantee that the complex
has the same structure of its smooth counterpart. Numerical accuracy is achieved via lo-
cal transformations that preserve the structure of the complex. In the 2D case, a QMS
complex is a quadrangulation of the triangle mesh M . In the QMS complex 0-cells are
the critical points of f , the 1-cells connect minima to saddles and maxima to saddles
[EHNP03]. In 3D, the 3-cells of the QMS complex are crystals, the faces of such crys-
tals are quadrangles with vertices at a minimum, two 1- saddles and a 2-saddle, or at a
maximum, two 2-saddles and a 1-saddle. Note that 1-cells and 2-cells of a QMS com-
plex are not necessarily those of maximal ascent/descent, as they are in a Morse-Smale
complex.

1.3.2.2 Watershed transform

The watershed transform is an alternative framework to Morse theory. It has been first
defined for grey-scale images, and several definitions exist in the discrete case [Mey94,
VS91]. The watershed transform has also been defined for a C2-differentiable function
f over a connected domain D, having the property that the gradient ∇f is non-null ev-
erywhere except possibly at some isolated points. This includes Morse functions. Basic
notions in the watershed transform are catchment basins and watershed lines, both defined
in terms of topographic distance [Mey94, RM00].

Definition 1.37. The topographic distance TD(p, q) between two points p and q belonging
to the domain D of f is

TD(p, q) = inf
P

∫
P

||∇f(P (s))||ds

where P is a smooth path inside D such that P (0) = p, P (1) = q.

The above definition ensures that the path which minimizes the topographic distance be-
tween p and q is the path of steepest slope, if it exists.

Definition 1.38. Let f be a C2-differentiable functions over a connected domain D and
let mi be a minimum of function f . We define:

• the catchment basin CB(mi) of mi as the set of points which are closer in terms of
topographic distance to mi than to any other minimum;

• the watershed (or watershed lines) WS(f) of f as the set of points in D which do
not belong to any catchment basin.

When f is a C2-differentiable Morse function, then the closure of the catchment basins
of the minima of f are the closure of the 2-cells of the ascending Morse complex of f ,
and watershed lines form a subset of separatrix lines that connect saddles to maxima.
Symmetrically, the closure of the catchment basins of function −f provides the closure
of the 2-cells of the descending Morse complex of f .

39

The watershed transform in the discrete case uses a discrete version of the topographic
distance [Mey94] defined for an undirected labeled graph, H = (NH , AH , f), where the
nodes in NH are labeled through function f . The nodes of graph H can be the pixels
or the voxels in an image, or the vertices of a cell complex. The arcs can represent the
adjacencies of the top cells in a grid or of the 1-cells of a cell complex. The lower slope
at a node p is the maximal slope linking p to any of its neighbors of lower function value.
A cost is associated with the arcs of H defined in terms of the lower slope. Given a path π
between two nodes p and q in H , the π-topographic distance is given by the sum of costs
for traversing all directed arcs composing π. The topographic distance T (p, q) between p
and q is the minimum of the π-topographic distances along all paths π between p and q.

The topographic distance is actually not a true distance function because it is equal to zero
on distinct nodes of H , if they belong to the same plateau. A plateau is a connected set of
nodes in H having the same function values. The definition of a catchment basin in graph
H is similar to the smooth case.
Given a minimum mi of function f , where mi can be a single node or a plateau, the
catchment basin of mi is defined as

CB(mi) := {p ∈ D : f(mi) + T (p,mi) < f(mj) + T (p,mj), ∀j 6= i}

1.3.3 Discrete Morse theory

Discrete Morse theory [For98, For02] is a discrete counterpart of Morse theory, with the
main purpose of transposing the results of Morse theory from a smooth to a combinato-
rial setting. It has been introduced for cell complexes but, in the following, we will just
describe it for simplicial complexes for simplicity.

Discrete Morse theory is a powerful tool for handling a scalar field defined on a shape and
for providing a more compact complex while it preserves the homological features. This
goal is achieved by considering a function defined over all the simplices of a simplicial
complex Σ. Given two simplices σ, τ of Σ, we write σ ≺ τ if σ is a face of τ and
dim τ = dimσ + 1.

Definition 1.39. A function f : Σ → R is called a discrete Morse function if, for every
simplex σ in Σ,

• c+(σ) := #{τ � σ | f(τ) ≤ f(σ)} ≤ 1,

• c−(σ) := #{ρ ≺ σ | f(ρ) ≥ f(σ)} ≤ 1.

Remark 1.40. For a discrete Morse function defined on a cell complex Γ, the further
condition is required:

• if p and q are cells of Γ such that p is an irregular face of q, then f(q) > f(p).

In other words, a discrete Morse function is just a function increasing with respect to the
dimension of the simplices which, for each k-simplex, admits at most one exception to the

40

rule above among the simplices of dimension k− 1, or among the simplices of dimension
k + 1. It is easy to show (see [For98], Lemma 2.5) that, for a discrete Morse function,
c+(σ) and c−(σ) cannot be simultaneously equal to 1.

Definition 1.41. A k-simplex σ in Σ is called critical simplex of index k (or, k-saddle) if
c+(σ) = c−(σ) = 0.

A critical simplex of index 0 is called a minimum and a critical simplex of index d =
dim Σ a maximum.

Note that, for every simplicial complex Σ, there exists at least a discrete Morse function
on it. Given an k-simplex σ of Σ, we can simply define f(σ) as k. However, in this
case, each cell is critical. Figure 1.15 (a) shows a discrete Morse function f defined on
a simplicial complex. Each simplex is labeled by the value of function f . Vertex 1 is
critical (minimum), since f has a higher value on all edges incident to it. Triangle 8 is
critical (maximum), since f has a lower value on all edges incident to it. Edge 6 is critical
(saddle), since f has a higher value on the incident triangle 8, and lower values on its
extreme vertices.

(a) (b)

Figure 1.15: (a) A discrete Morse function on a simplicial complex and (b) the corre-
sponding gradient vector field (red simplices represent critical simplices).

Definition 1.42. A discrete vector field V on a simplicial complex Σ is a collection of
pairs of simplices (σ, τ) ∈ Σ×Σ such that σ ≺ τ and each simplex of Σ is in at most one
pair in V .

A discrete Morse function f : Σ → R induces a discrete vector field V = {(σ, τ) ∈
Σ× Σ |σ ≺ τ and f(σ) ≥ f(τ)} called the gradient vector field (or Forman gradient) of
f on Σ. Each pair (σ, τ) ∈ V can be visualized as an arrow from σ to τ .

Definition 1.43. Given a discrete vector field V , a V -path (or gradient path) is a sequence

[(σ1, τ1), (σ2, τ2), . . . , (σr, τr)]

of pairs of k-simplices σi and (k + 1)-simplices τi, such that (σi, τi) ∈ V , σi+1 is a face
of τi, and σi 6= σi+1.

41

A V -path is a closed path if σ1 is a face of τr different from σr.

Theorem 1.44. ([For02], Thm. 3.5). A discrete vector field V is the gradient vector field
of a discrete Morse function if and only if there are no closed paths.

Now, our goal is to build, starting from a discrete Morse function, a chain complex
M∗ = (Mk, ∂̃k)k∈N, whose groups Mk are generated by the critical k-simplices and
the boundary maps ∂̃k are obtained by following the gradient paths of V .

Definition 1.45. Let σ and τ be two critical simplices of dimension k and k + 1, re-
spectively. We call separatrix V -path between τ and σ each sequence of (k + 1)- and
k-simplices [τ, (σ1, τ1), (σ2, τ2), . . . , (σr, τr), σ] such that all the pairs form a V -path from
a face σ1 of τ to a coface τr of σ, or, in case of such a V -path is empty, σ is a face of τ .

Given two critical simplices τ , σ, we define the multiplicity of the incidences between τ
and σ to be the number µ(τ, σ) of separatrix V -paths between τ and σ.

In Figure 1.15(b), we have two separatrix V -paths between critical edge 6 and the critical
vertex 1. They are identified by following the sequence of (vertex, edge) pairs starting
from the boundary of edge 6 and ending on vertex 1. The two separatrices are [6, (3, 3), 1]
and [6, (5, 5), (2, 2), 1]. The multiplicity of the incidences between edge 6 and vertex 1 is
two.

Given a separatrix V -path π = [τ, (σ1, τ1), (σ2, τ2), . . . , (σr, τr), σ], we call multiplicity of
π the number

m(π) := (−1)r
∏r

i=0〈∂τi, σi+1〉∏r
i=1〈∂τi, σi〉

where 〈 , 〉 denotes the scalar product between two chains, τ0 and σr+1 represent τ
and σ, respectively.

Definition 1.46. Given a gradient vector field V on a simplicial complex Σ, the discrete
Morse complex associated with Σ is the chain complexM∗ := (Mk, ∂̃k)k∈Z defined by

• Mk is the free Abelian group generated by the critical k-simplices of Σ,

• 〈∂̃τ, σ〉 :=
∑

π∈Π(τ,σ) m(π), where Π(τ, σ) is the set of all separatrix V -paths be-
tween τ and σ.

Remark 1.47. By considering Z2 as coefficient group, the number 〈∂̃τ, σ〉 coincides with
the multiplicity of the incidences µ(τ, σ) between τ and σ.

As already mentioned, the discrete Morse complexM∗ is actually a chain complex and
it has the same homological information of the original simplicial complex Σ.

Theorem 1.48. ([For98], Thm. 8.2). Let G be a Abelian group. M∗ is a chain complex
and, for each k ∈ N,

Hk(M∗;G) ∼= Hk(Σ;G)

42

(a) (b) (c) (d)

Figure 1.16: (a) A gradient vector field defined on a simplicial complex. For a terrain
dataset, discrete Morse function f corresponds to the height function and its critical points
are peaks (red dots), saddles (green dots) and pits (blue dots). (b) Descending Morse
complex decomposes the terrain in a collection of 2-cells in one to one correspondence
with the peaks while (c) the 2-cells forming the ascending Morse complex are in one-to-
one correspondence with the pits. (d) The 1-skeleton of the Morse-Smale complex. The
separatrix V -paths for a terrain dataset always connect a saddle with a maximum or a
saddle with a minimum.

Analogously to the definitions of the Morse theory (see Subsection 1.3.2), given a gradient
vector field V on a simplicial complex Σ (see Figure 1.16(a)), the notions of descending
and ascending Morse complexes are defined based on the behavior of the gradient ar-
rows of V on Σ. Given a critical k-simplex τ , its corresponding descending k-cell is the
collection of the k-simplices of Σ belonging to a V -path starting at τ . Dually, its cor-
responding ascending (d − k)-cell is the collection of all the k-simplices belonging to a
V -path that converges to τ . The collection of all the descending [ascending] cells form
the descending Morse complex ΣD [ascending Morse complex ΣA] (see Figure 1.16(b-c)).
The Morse-Smale (MS) complex ΣMS consists of the connected components of the inter-
section of descending and ascending Morse cells. The 1-skeleton of the Morse-Smale
complex ΣMS is the subcomplex of ΣMS composed only of its 0-cells and 1-cells (see
Figure 1.16(d)).
Descending, ascending and Morse-Smale complexes can be considered as different rep-
resentations of the original simplicial complex Σ on which the gradient V is defined.
So, since they share the same geometrical realization, they also have the same homol-
ogy groups. Actually, despite in different context of the literature they assume different
names, the notion of descending Morse complex coincides with the notion of discrete
Morse complex.

Acyclic matchings
Given a simplicial complex Σ, a gradient vector field V can be built without defining a
discrete Morse function on Σ. It is enough to consider an acyclic matching of Σ.

Definition 1.49. Let Σ be a simplicial complex. A matching of Σ consists of a partition
of Σ into three sets A, K, and Q along with a bijection w : Q → K, such that, for each
σ ∈ Q,

〈∂w(σ), σ〉 = ±1.

We denote such a decomposition as (A, w : Q → K).

43

Given a matching of Σ, we define by transitive closure a relation ≤ on Q as follows. Let
σ, σ′ be two distinct elements in Q,

if 〈∂w(σ), σ′〉 6= 0, then σ′ < σ.

Definition 1.50. A matching of Σ is acyclic if ≤ is antisymmetric, and, thus, it defines a
partial order on Q.

In order to formalize the relationship among these notions and discrete Morse theory, it
is sufficient to note that, if we define V := {(σ,w(σ))|σ ∈ Q}, the condition on the
acyclicity of the matching is equivalent to the requirement that V does not have closed
paths. Then, by Theorem 1.44, we are able to conclude that a matching is acyclic if and
only if it generates a gradient vector field.

44

Chapter 2

State of the Art

This chapter is mainly devoted to the description of the context in which our work has
been developed.

First, we focus our attention on the data structures used in the literature for encoding sim-
plicial and cell complexes. In Section 2.1, we describe the most relevant data structures
representing a simplicial complex of arbitrary dimension by suitably storing a subset of its
entities and of their topological relationships. We present an analysis and comparison of
such data structures [FID14, FIDon]. In Section 2.2, we give an overview on the literature
concerning a specific class of representations, called multi-resolution models, providing
an efficient way to encode a cell or simplicial complex and to easily retrieve it at different
levels of detail.

Sections 2.3 and 2.4 represent two of the most relevant contributions of the thesis. In these
sections, we focus on algorithms for the computation of standard and persistent homology
and for the retrieval and simplification of Morse and discrete Morse complexes. An in-
depth study and analysis of the literature allows us to provide a formal and complete
classifications of these algorithms. Some of the content of Section 2.4 has been published
in two survey papers on Morse theory and its applications [DFIM15] and on discrete
Morse theory for homology computation [DFI15].

2.1 Data structures for simplicial complexes

Topological data structures allow representing a cell complex by partially encoding its
cells and the boundary, coboundary and adjacency relations between them. The main
purpose of a topological data structure is to encode a complex balancing the storage cost
for representing a subset of the cells and topological relations between them, and the ef-
ficiency in retrieving those which are not explicitly represented. The analysis developed
in this section takes into account only topological data structures for encoding simplicial
complexes of arbitrary dimension. We refer to [DH05, DH07] for a discussion about data
structures encoding simplicial complexes of specific dimensions.

45

In the literature, some topological data structures for encoding a simplicial complex of
arbitrary dimension have been proposed. The most common one is the Incidence Graph.
An Incidence Graph (IG) [Ede87] is a topological graph-based representation of a cell
complex which encodes all the cells in the nodes of the graph and their immediate in-
cidence relations in its arcs explicitly. When dealing with data characterized by a huge
number of points, or when working in a high-dimensional space, using a data structure
which stores all the simplices is unfeasible in practice.
Data structures based on the encoding of only top simplices and vertices have been shown
to be particularly effective in two and three dimensions being, in practice, also perfect
candidates for extension to higher dimensions. An example is provided by the dimension-
independent adjacency-based data structure for encoding arbitrary simplicial complexes
called Generalized Indexed data structure with Adjacencies (IA∗) [CDW11].
Unlike the IG and IA∗ data structures which allow the efficient extraction of all bound-
ary and coboundary relations, the Simplex Tree [BM12, BDM13] and the Skeleton Blocker
[ALS11] have been developed with the purpose of performing a specific operation effi-
ciently.
Recently, a data structure, called Stellar Tree, based on a different approach has been pro-
posed [Fel15]. Stellar Tree requires an ambient space in which vertices of the complex
are embedded. It can be considered as a spatio-topological data structure for performing
efficient topological queries on simplicial and a selected set of non-simplicial complexes.

In our work, we have mainly focused our attention on three topological data structures:
the Incidence Graph, the Generalized Indexed data structure with Adjacencies and the
Simplex Tree. These three topological data structures are depicted in Figure 2.1 for a
simplicial complex Σ.
Further, we briefly describe also the Skeleton Blocker representation and the spatio-
topological data structure called Stellar Tree. Finally, we present a comparison among
all the described data structures.

The Incidence Graph
Given a simplicial complex Σ, the Incidence Graph (IG) is a data structure describing its
Hasse diagram [PS03], i.e., the graphical representation of the partially ordered set gen-
erated by all the simplices of Σ and their immediate incidence relations. More precisely,
the IG is a graph G = (N,A), where

• the nodes in N correspond to the simplices of Σ;

• an arc a ∈ A connects two nodes of consecutive dimension, if and only if the
corresponding simplices σ and τ are mutually incident, i.e., if σ ≺ τ or τ ≺ σ.

Figure 2.1 (b) depicts the Incidence Graph encoding the simplicial complex represented
in Figure 2.1 (a).
The Simplified Incidence Graph (SIG) [DGH04] and the Incidence Simplicial (IS) data
structure [DHPC10] are simplified representations of the IG specific for simplicial com-
plexes. Both the SIG and the IS encode all the simplices of a simplicial complex and,
for each k-simplex σ, its (k − 1)-faces and a subset of the simplices in the coboundary

46

(a) (b)

(c) (d)

Figure 2.1: A simplicial complex (a) and its representation as the Incidence Graph (b), as
the IA∗ data structure (c) and as the extended version of Simplex Tree (d).

of σ. The IG, SIG, IS data structures have been all implemented in a public domain li-
brary called Mangrove Topological Data Structure (TDS) Library [Can12a, CD13] which
is a dimension-independent and extensible framework, targeted to the fast prototyping of
topological data structures. In [Can12b], experimental comparisons of these structures
have been performed in 2D, 3D and higher dimensions. The IS data structure is as com-
pact as the SIG data structure for arbitrary simplicial 2-complexes, and more compact
than the SIG representation for arbitrary simplicial 3-complexes. Both these structures
have shown a behavior similar to the IG when working in high dimensions.

The Generalized Indexed data structure with Adjacencies
The Generalized Indexed data structure with Adjacencies (IA∗) [CDW11] only encodes
the vertices and the top simplices of a simplicial complex Σ and a subset of its adjacent
and boundary relations. The IA∗ data structure stores the set of vertices and top simplices
of Σ plus the following relations:

• for each top k-simplex σ, its vertices;

• for each top k-simplex σ, all top k-simplices sharing with σ a (k − 1)-face;

• for each (k − 1)-simplex σ on the boundary of at least two top k-simplices, all top
k-simplices on the coboundary of σ;

• for each vertex v, all top 1-simplices in the coboundary of v;

• for each vertex v, one arbitrary selected top k-simplex for each (k − 1)-connected
component of the set of the simplices incident in v.

47

A subcomplex Σ′ of a complex Σ is called (k − 1)-connected if, for any two simplices σ,
σ′ of Σ′, there exists a sequence (σ0, σ1, . . . , σm) of k-simplices of Σ′ such that any two
consecutive simplices σi, σi+1 are adjacent, σ is a face of σ0 and σ′ is a face of σm.
For a better comparison with the IG, IA∗ data structure can be described in graph termi-
nology.
The graph representation of the IA∗ data structure is defined as follows. A simplicial
complex Σ is encoded by using a graph GIA∗ = (NIA∗ , AIA∗):

• the set NIA∗ of the nodes is partitioned in two classes Ntop and N0 corresponding
to the top simplices and the vertices of Σ, respectively;

• the nodes in Ntop corresponding to two k-simplices are connected by an arc if they
share a common face of dimension k − 1;

• for each node in Ntop representing a k-simplex σ, k + 1 oriented arcs connect it to
the nodes in N0 corresponding to its vertices;

• given a node v in N0, an oriented arc from it to a node in Ntop is encoded for each
connected component C of the graph consisting of the nodes in Ntop and the arcs
between them and such that there exists at least one arc starting from a node of C
and reaching v.

See Figure 2.1 (c) for an example.
A first implementation of the IA∗ data structure is available in the public domain software
Mangrove TDS Library[Can12a, CD13]. Currently, an optimized implementation is in
development.

The Simplex Tree
While the IG and the IA∗ representations are complete data structures allowing the ef-
ficient retrieval of all the boundary and coboundary relations and the navigation of the
encoded simplicial complex Σ, the Simplex Tree [BM12] has been originally designed
with the task of quickly performing only boundary queries. The Simplex Tree performs
this task by storing explicitly all the simplices of Σ through a trie.
Chosen a total order among the vertices of Σ, the Simplex Tree encodes the arcs of the
Incidence Graph of Σ respecting the lexicographic order of the vertices. More precisely,
Simplex Tree stores the simplicial complex Σ in a tree satisfying the following properties:

• the nodes of the Simplex Tree are in bijection with the simplices of the complex
and the root is associated with the empty simplex;

• each node of the tree, except for the root, stores the greatest label between the ones
associated with the vertices of the corresponding simplex;

• each path from the root to a node corresponds to the simplex σ generated by the
vertices corresponding to the labels of the traversed nodes;

• labels are sorted by increasing order along such a path and each label appears ex-
actly once.

48

Similarly to the IG, the Simplex Tree encodes all the simplices of the represented sim-
plicial complex. The represented relations consist of a specific spanning tree of the Hasse
diagram. In order to be able to perform also queries different to the boundary retrieval, an
extended version of the Simplex Tree has been proposed [BM12]. This extended version

• encodes a circular list linking all the nodes at the same depth of the simplices whose
last vertex, with respect to the lexicographic order, is the same, in order to locate all
the instances of a given label in the tree;

• attachs to each set of sibling nodes a pointer to their parent, in order to access a
parent in constant time.

In Figure 2.1 (d), the extended version of the Simplex Tree encoding the simplicial com-
plex represented in Figure 2.1 (a) is depicted.

The Skeleton Blocker
The Skeleton Blocker data structure [ALS11] has been developed for simplicial complexes
close to flag complexes, where the flag complex for an undirected graph G is the largest
simplicial complex having G as its 1-skeleton. It encodes the 1-skeleton of the complex
plus a set of blockers, where a blocker is a simplex which is not contained in the complex
but its faces are.
The Skeleton Blocker data structure has been defined specifically to perform a specific
operator, called edge contraction, on flag complexes, since flag complexes do not have
blockers. On complexes of different types the blocker computation is in general difficult,
as mentioned in [BM12]. These considerations and our preliminary experiments have led
us to do not consider this data structure as a good tool for encoding an arbitrary simplicial
complex.

The Stellar Tree
A different method for encoding data embedded in a metric space (the ambient space) is
through a spatial index. Recently, a new spatio-topological data structure for triangle and
tetrahedral simplicial complexes, based on a point-region quadtree and octree [Sam05]
has been proposed [WDFV11]. Differently from other hierarchical space-based spatial
indices, the hierarchy is not a spatial index on the complex (i.e., to support efficient spatial
queries such as point location), but it is a tool to support efficient retrieval of topological
connectivity (i.e., for topological queries), thus encoding a minimum topology and trading
space for connectivity. The benefits of such a representation for triangle and tetrahedral
simplicial complexes have been shown in the computation of a discrete Morse complexes
on triangulated terrains and on unstructured volume datasets [FlDFW14, WIFD13].
Recently, these ideas have been extended to define a new topological data structure called
Stellar Tree for simplicial complexes and for certain classes of cell complexes based on a
hierarchical spatial index [Fel15]. The obtained data structure is a compact representation
for such complexes which scales well with both the size and the dimension of the com-
plex, more compact than current simplicial data structures and suitable for performing
topological queries efficiently. The spatial index also provides a natural way for orga-
nizing the data points based on a metric space, guaranteeing thus a way to distribute the

49

Dataset d |Σ0| |ΣT | |Σ| Cost (GB)
IA∗ IG ST

DTI-SCAN 3 0.9M 5.5M 24M 0.97 11.9 2.4
VISMALE 3 4.6M 26M 118M 4.7 - 9.7
ACKLEY4 4 1.5M 32M 204M 6.8 - 12.8
AMAZON01 6 0.2M 0.4M 2.2M 0.12 1.6 0.3
AMAZON02 7 0.4M 1.0M 18.4M 0.28 9.8 1.5
ROADNET 3 1.9M 2.5M 4.8M 0.8 3.3 1.0
SPHERE-1.0 16 100 224 0.6M 0.003 0.9 0.04
SPHERE-1.2 21 100 285 26M 0.0032 - 1.5
SPHERE-1.3 23 100 382 197M 0.0034 - 11.01

Table 2.1: Dataset used and storage cost for encoding the corresponding simplicial com-
plex through IA∗, IG and Simplex Tree (ST) data structures.

computation in chunks of approximatively homogeneous size. The idea is to have a de-
composition of the embedding space of the complex Σ according to a hierarchical spatial
index built on the vertices of the complex. Thus, a block b of the space subdivision in-
duced by the spatial index contains a subset Vb of the vertices of the complex plus all top
simplices having at least one vertex in Vb.
The Stellar Tree allows for a local reconstruction of the optimal application-dependent
topological data structure to solve the task at hand using a fraction of the memory required
by the corresponding global topological data structure. For this reason, Stellar Tree is well
suited for applications where we efficiently extract local topological relations.

Comparisons
Several comparisons between implementations of the presented data structures have been
performed.
For low-dimensional simplicial complexes, comparisons between IA∗, IG and IS data
structures have been presented in [CDW11, CD13]. They have shown that:

• for 2-complexes, the IA∗ data structure requires on average 60% of the space of the
IS data structure and 20% of that of the IG;

• for 3-complexes, it requires on average 40% of the space of the IS data structure
and 30% of that of the IG.

A contribution of our work has been to extend such experimental comparisons to sim-
plicial complexes of arbitrary dimensions. In [FID14, FIDon], we have performed such
a comparison between the IA∗ data structure, the IG and the Simplex Tree. Table 2.1
summarizes the characteristics of the datasets and the storage costs with the three data
structures used. For each dataset we are indicating the dimension of the resulting simpli-
cial complex (column d), the number of vertices (column |Σ0|) and top simplices (column
|ΣT |), the size of the complex (column |Σ|) and the storage cost required by the three
different data structures in Gigabytes (GB).

50

Observing the storage costs of the three data structures we can notice that this latter in-
creases based on the total number of simplices only when we are using the IG or the
Simplex Tree. The IG runs pretty fast out of memory (indicated with -) while the Sim-
plex Tree has a much higher limits since it encodes only a subset of the boundary re-
lations between simplices. The IA∗ is not depending on the total number of simplices
but only on the top simplices. This means that simplicial complexes in low dimensions
(like ROADNET or the volumetric datasets) may require much more memory than, for
example, SPHERE-1.3 (being a 23-simplicial complex composed by less than 400 top
simplices). In general, we notice that the IA∗ behaves better than the Simplex Tree. The
ratio between the two data structures roughly depends on the ratio between the number
of top simplices and the size of the complex. Thus, in the worst case we have a IA∗ that
is 1.2 times more compact than the Simplex Tree (ROADNET dataset), up to the case of
SPHERE-1.3 where the storage cost for the IA∗ is negligible with respect to the 11 GB
required by the Simplex Tree.
Another comparison has involved the Stellar Tree, IA∗ data structure and the Simplex
Tree [Fel15]. First of all, a comparison between the expressive power of these data struc-
tures can be considered. From this point of view, the Stellar Tree requires that the complex
is embedded in a metric space, while the IA∗ and the Simplex Tree can handle abstract
complexes.
Experimental evaluations have showed that the Stellar Tree is always more compact than
the IA∗ and of the Simplex Tree, requiring on average:

• 20% of the storage of the IA∗ data structure;

• 2% to 5% of the storage used by the Simplex Tree.

To investigate the feasibility of the Stellar Tree as a general purpose data structures
for simplicial complexes, the timings required for retrieving basic topological relations
(boundary, coboundary, adjacency), which are crucial building blocks for navigating the
simplicial complex, are being evaluated. Our interest is in data structures which can sup-
port several basic modeling operations and then can be the basis for a tool for homology
computation and topological segmentation. First results show that extracting massively
the coboundary relations of the vertices, the Stellar Tree requires from 80% to 95% less
time than the same massive algorithm executed on the IA∗ data structure.
Moreover, working separately on each chunk of the spatial index, the Stellar Tree provides
an implicit mechanism to maintain the memory consumption at runtime low.

2.2 Multi-resolution models

Due to the complexity of real data sets and shapes, such as terrain models or volumetric
scalar fields, the investigation of hierarchical methods to control and adjust the level of
detail (LOD) of a given dataset is an active research area. A multi-resolution model (or
LOD model) permits to obtain different representations of an object at different levels of
detail.

51

Progressive models [SG98] encode a coarse complex plus a linear sequence of updates re-
fining it, and a shape at an intermediate resolution is obtained by truncating the sequence
of refinements at some point. Unlike progressive models, in a multi-resolution model the
level of detail can be uniform or vary other the object.
The resolution of a cell complex can be considered as an accuracy parameter in the rep-
resentation of a given spatial object and is related to the density of its cells. According
to our intuition, in order to produce accurate object descriptions a high resolution, i.e., a
high number of cells of small size, is required. On the other hand, there is not always the
need of the highest possible accuracy in each part of the shape. A sufficiently high accu-
racy for the specific application task can be achieved by locally adapting the resolution
of the considered data set in different parts, thus reducing processing costs and memory
space consumption. A multi-resolution model allows to face this problem and it basically
consists of a structure which organizes a collection of alternative representations of the
shape at full resolution. This structure is built off-line in a preprocessing step and can be
efficiently queried according to parameters specified by an application task.

Several application domains have taken advantage from the use of a multi-resolution
model. So, in the literature a lot of different LOD models have been developed. A
complete classification of the proposed multi-resolution models is out of the scope of this
thesis. The main aim of this section is to give a brief overview of such LOD models more
related to our work.
According to the kind of information they allow to handle, multi-resolution models can
be subdivided in two main classes:

• geometry-based models,

• morphology-based models.

We denote as geometry-based the multi-resolution models based on simplification and
refinement modifications only affecting the cellular structure and the geometry of the cell
complex on which they are performed. A multi-resolution model reveals to be useful tool
especially to the description of scalar fields defined on a shape, e.g., terrain models or
volumetric scalar fields. In order to manage and model these data, a morphology-based
multi-resolution model is preferred. These models use the scalar field to guide the sim-
plification process and are based on refinement and simplification operators acting on the
regions of influences of the critical points of the field leaving the geometry and the cellu-
lar structure of the underling shape unchanged.

Geometry-based models can be further classified into nested and non-nested model. Nest-
ed models are based on recursive modifying operations acting on top cells, such as bi-
sections, and exploit spatial data structures such as quadtrees and octrees. Non-nested
models are based on modifications that can affect more than one top cell and can be clas-
sified according to the kind of operators used, e.g., vertex-based and edge-based multi-
resolution models. For detailed discussions about geometry-based models please refer to
[DM02, DDMP03, DDM+06].

52

Morphology-based models can be defined when the shape to be studied is endowed with a
scalar field. In this context, the data represented at different levels of detail is the decom-
position of the shape induced by the field, e.g., the Morse complexes induced by a Morse
function, instead of the structure and the geometry of the shape itself. A survey of such
models can be found in [ČDMI14]. To be mentioned is the multi-resolution model for
Morse complexes introduced in [ČDI12, CDI13, Iur14] which is based on a graph-based
structure compactly encoding and quickly extracting the topology of the two Morse com-
plexes as well as the 1-skeleton of the Morse-Smale complex at different levels of detail.

Recently, a new class of multi-resolution models combining both geometrical and mor-
phological modifications is under investigation. A first example of such a model has been
proposed and developed for scalar fields on triangulated terrain models [ID14].

2.3 Computing simplicial homology

The retrieval of homological information of a shape is a time-consuming task. To ef-
ficiently compute standard and persistent homology, a bunch of methods has been pro-
posed. In this section, we provide a classification of these techniques. Then, we describe
each class of methods focusing on the most relevant algorithms from our point of view.
Finally, we give an overview of the software tools to actually compute standard and per-
sistent homology.

2.3.1 Classification

In the literature, several algorithms have been developed to compute homology and persis-
tent homology. Most of the techniques introduced for persistent homology computation
can be suitably adapted for retrieving homology just by choosing a trivial filtration.
The classical way to retrieve homological information is based on a matrix reduction, the
Smith Normal Form (SNF) reduction (see Subsection 1.2.1.3), applied to the boundary
matrices. Similarly, an algorithm based on SNF reductions [Zom05] can be used to
compute persistent homology. Although SNF -based methods are theoretically valid in
any dimension, their complexity is super-cubical in the number of the simplices of the
complex. This has led to develop other techniques to compute standard and persistent
homology.
Based on the strategy they adopt, we can subdivide the methods introduced in the litera-
ture to retrieve homological information into the following classes:

• direct optimizations,

• coarsening and pruning approaches,

• distributed approaches,

• methods based on annotations.

53

We refer as direct optimizations all those methods that improve the efficiency of the
SNF computation or that introduce new techniques, based on a matrix reduction, to com-
pute the homological information. Stochastic [Gie96] and deterministic [KB79, Sto96]
methods represent a first attempt of optimization of the SNF reduction algorithm. An-
other strategy, only available for simplicial complexes embeddable in a 3-dimensional
sphere, to retrieve homological information efficiently is the incremental algorithm pro-
posed in [DE95, ELZ02]. In [ZC05], persistent homology with coefficients in a field is
obtained with a linear complexity in practical applications by studying a graded mod-
ule over a polynomial ring. Several sequential optimizations of this algorithm have been
proposed: in [MMS11] exploiting zigzag persistent homology, in [CK13] by using an
output-sensitive algorithm, in [CK11] improving the running time thanks to a suitable
change in the order of column reduction, in [DMVJ11] investigating relations between
persistent homology and cohomology, in [BM14] introducing an algorithm computing
persistent homology with respect various coefficient fields in a single matrix reduction.

We classify as coarsening and pruning approaches the methods which reduce the size of
the input complex without changing its homology, by applying iterative simplifications,
and by computing the homology when no more simplifications are possible. Some of
these approaches are based on reductions and coreductions [MB09, MW10, DKMW11],
others simplify the simplicial complex via acyclic subspaces [MPZ08, BDMZ12] or by
using edge contractions [ALS11]. A similar approach is based on the notion of tidy set
[Zom10b], a minimal simplicial set obtained trimming and thinning the original simpli-
cial complex. This method is particularly effective for computing the homology of clique
complexes, such as Vietoris-Rips complexes, since it prevents to first construct them.
Another class of reduction approaches [RWS11, HMMN14, HMM+10] is based on the
construction of the discrete Morse complex, which has the same homology as the input
complex [For98, For02], or of its iterated version [DW12].

Distributed approaches efficiently retrieve the homological information of a complex
through parallel and distributed computations. Some of such approaches are based on
a decomposition of the simplicial complex [BCA+11, LZ14]. Some others act directly on
the boundary matrices. For instance, in [EH08, LSVJ11], persistent homology is locally
computed and then merged through spectral sequences; in [MNV13], homology groups
are retrieved by parallelizing a coreduction-based algorithm; in [BKR14a], persistent ho-
mology is obtained thanks to a parallelizable algorithm performing matrix reductions only
after having decomposed the matrices in chunks; in [BKR14b], a scalable algorithm for
computing persistent homology in parallel in a distributed memory environment is pro-
posed.

Recently, a new strategy of computation is revealing very efficient. We call these ap-
proaches methods based on annotations. In [DFW12, BDM13], persistent homology is
efficiently retrieved by the use of annotations which are vectors associated with each sim-
plex of the complex encoding in a compact way the homological class of the simplex
itself. The annotation-based approach is not far from being considered in the class of
the direct optimizations. We prefer to describe this approach in a separated subsection

54

because of the use and the encoding of a matrix specific for annotations improving this
method from the point of view both of the performances and of the storage cost.

2.3.2 Direct optimizations

Direct optimizations represent a first attempt in reducing the time complexity of the algo-
rithm retrieving the groups of standard and persistent homology of a simplicial complex.
These methods can be used independently or can be combined with a coarsening, a prun-
ing or a distributed approach in order to further improve the efficiency.

In this subsection, we focus on the two most relevant algorithms in the class of the direct
optimizations. Specifically, we briefly describe the algorithm proposed in [ZC05] and the
dual approach introduced in [DMVJ11]. Both methods aims to efficiently compute per-
sistent homology.

2.3.2.1 The standard algorithm

The algorithm introduced in [ZC05], that from now on we will call standard algorithm,
is an approach generalizing and extending to any dimension the incremental method pro-
posed in [DE95, ELZ02].
This method is only valid for persistent homology with coefficients in a field. Under
such assumption, time complexity is linear in practical applications. This positive result,
in combination with the fact that in low dimensions the homological information with
respect to coefficients in a field completely characterizes the homology groups of a sim-
plicial complex, is one of the reasons why in many applications standard and persistent
homology are considered with respect to coefficients in a field.
The approach is based on the fact that the persistent homology of a filtered simplicial
complex is simply the standard homology of a specific graded module over a polynomial
ring. Choosing as coefficient group a field F, typically F = Z2, the considered poly-
nomial ring F[t] becomes a PID. In this context, by executing an SNF reduction, the
graded module over F[t] can be decomposed and the persistent homology of the filtered
simplicial complex retrieved.

2.3.2.2 The dual algorithm

In [DMVJ11], a dual algorithm with respect to the standard one is presented. The work
establishes algebraic relationships between homology and cohomology groups and shows
that they contain equivalent information if considered with coefficients in a field.
The dual algorithm proposed in [DMVJ11] is based on a matrix reduction similar to the
one described in [ZC05] but, by exploiting the theoretical duality between homology and
cohomology, it acts on the row of the matrix instead of on the columns. In most of
the cases, this strategy, according to a further optimization, allows to compute persistent

55

homology of a filtered simplicial complex in a more efficient way with respect to the
standard algorithm.

2.3.3 Coarsening and pruning approaches

The methods introduced in this subsection are mainly based on preprocessing the complex
in order to reduce the size of the complex and thus the complexity of the homological
computation that will be usually performed by a matrix reduction method.

The methods described here have been originally developed in order to speed up the
computation of standard homology. In spite of this, by requiring additional compatibility
conditions between the simplification operator and the filtration of the input complex,
most of the approaches we present in this subsection can be easily exploited to efficiently
retrieve persistent homology [DW+14].

2.3.3.1 Approaches based on acyclic subcomplexes

The first class of coarsening and pruning approaches we describe is based on the removal
of subcomplexes, called acyclic, with null homology. This idea has been introduced and
developed in [MPZ08, BDMZ12]. Here, we focus mainly on [BDMZ12] which deals
with simplicial complexes, but this approach can be generalized in the context of cell
complexes. We refer to the above mentioned papers for a more general and detailed dis-
cussion.

As already claimed, the main idea of this coarsening approach consists of determining
an acyclic subcomplex A of a simplicial complex Σ as large as possible and computing
the relative homology of Σ with respect to A, which is much easier to compute than the
homology of Σ.

Definition 2.1. A simplicial complexA is called acyclic if its homology is isomorphic to
the homology of the one point complex P , i.e.,

Hk(A) ∼= Hk(P) ∼=

{
Z for k = 0

0 for k ≥ 1

The main theoretical result on which the work in [BDMZ12] is based is given by the
following theorem.

Theorem 2.2. Let Σ be a path-connected simplicial complex,A be an acyclic subcomplex
of Σ, then

Hk(Σ) ∼=

{
Z for k = 0

Hk(Σ,A) for k ≥ 1

Relative homology groups of a pair (Σ,Σ′) represent the homology groups of the complex
obtained considering Σ and collapsing to a single point the subcomplex Σ′. So, consider-
ing as Σ′ an acyclic subcomplexA, it is intuitively true that the homology of the obtained

56

complex is the same of the original one. Theorem 2.2 allows us to reduce the computation
of the homology of Σ to the calculation of the relative homology of Σ with respect to A,
that is easier to compute since chain complex Ck(Σ,A) is smaller than Ck(Σ).

The main aim is now to determine an acyclic subcomplex of Σ which is as large as pos-
sible. In [BDMZ12], the way to obtain this large acyclic subcomplex A is not uniquely
established.
One can proceed in the following way:

Step 1 initialize A := τ , where τ is an arbitrary simplex of Σ;

Step 2 take σ a simplex of Σ; if A ∪ σ1 is acyclic, then set A := A ∪ σ and repeat Step 2,
otherwise return A (see Figure 2.2 for an example).

Figure 2.2: An acyclic subcomplex A of a simplicial complex Σ. By considering the
simplex σ, A ∪ σ is still acyclic and A can be updated to A ∪ σ. Instead, the simplex σ′

cannot be added to A, since A ∪ σ′ is no more acyclic.

By using this approach, it is therefore essential to have a procedure to determine the
acyclicity of simplicial complex A ∪ σ. We want an efficient algorithm, called Acyclici-
tyTest, that, taking A and σ, is able to return true if and only if A ∪ σ is acyclic.

Theorem 2.3. Let Σ and Σ′ be acyclic simplicial complexes. Then, Σ ∪ Σ′ is acyclic if
and only if Σ ∩ Σ′ is acyclic.

In our case, we choose A and simplex σ as the acyclic simplicial complexes of the The-
orem 2.3, thus, in order to determine if A ∪ σ is acyclic is sufficient (and necessary) to
determine if A ∩ σ is acyclic. This result gives us a great advantage in computational
terms, becauseA∩σ is a subcomplex of a simplex and so its size is very small. The most
intuitive way to determine the acyclicity ofA∩σ is the direct computation. Unfortunately,
if the dimension of the input complex Σ is greater than 4 this method is computationally
very expensive. The strategy is therefore to use a partial test, i.e., a test such that if it
returns true, thenA∩ σ is acyclic but, if it returns false as output denotes a failure to
prove that A ∩ σ is acyclic.

1In this subsection, when we write A ∪ σ or A ∩ σ, we are committing a little abuse of notation, In
fact, we are using σ to denote the closure by inclusion of the simplex σ, i.e., the collection of simplices
composed by σ and all its faces.

57

In [BDMZ12], two different acyclicity tests are proposed. The first one is based on the
fact that it is impossible, in a simplicial complex, to create a (k − 1)-cycle with less than
k simplices of dimension k − 1. So, if we add to the already built acyclic subcomplex A
a k-simplex σ such that the set of the top simplices of A ∩ σ is not empty, consists only
of (k − 1)-simplices and has cardinality strictly less than k, then A ∩ σ is acyclic.
The second test only requires to compute the geometrical intersection of the top simplices
of A ∩ σ. If this intersection is not empty, then A ∩ σ is acyclic and so A ∪ σ.
The two acyclicity tests proposed in [BDMZ12] for a simplicial complex provide a fast
and memory efficient preprocessing of the given complex and an effective way for the
computation of its homology. With this method, the Betti numbers and the torsion coeffi-
cients of the original simplicial complex can be retrieved. In spite of it could be possible,
none of the approaches based on acyclic subcomplexes has been adapted to the computa-
tion of the homology generators of a simplicial complex .

Persistent homology computation through acyclic subcomplexes. The approach pre-
sented in [BDMZ12, MPZ08] has been adapted for computing persistent homology
[DW+14]. Let Σ be a simplicial complex endowed with a filtration F = {Σm | 0 ≤ m ≤
M}. By adding a further feasibility condition to the acyclic subcomplex A of Σ ensuring
a compatibility with the filtration F , it can be proven that the persistent homology groups
of the filtered complex Σ are isomorphic to the ones of C∗(Σ,A) with the filtration natu-
rally induced by F . Specifically, the compatibility condition with respect to the filtration
F for an acyclic subcomplex A of Σ is the request that, for each m, the subcomplex
Am := A ∩ Σm is an acyclic subcomplex in Σm.

2.3.3.2 Approaches based on reductions and coreductions

Another class of coarsening and pruning approaches improves standard and persistent
homology computation by iteratively applying two homology-preserving simplifications
called reduction and coreduction operators. This method is described in [MB09, MW10,
DKMW11] for (regular) CW complexes. In our presentation, we will mainly refer to
[MB09] and we will focus our attention on simplicial complexes.

In order to formally describe this method, we need to introduce the notions of S-complex
and describe reduction and coreduction operators.

S-complexes
An S-complex can be considered as a chain complex in which each chain group is gen-
erated by a fixed and finite basis. The notion of S-complex is useful since it allows to
theoretically handle cell complexes in which some faces are missing.

Definition 2.4. Consider a finite graded set S =
⊔
k∈N Sk along with a function κ :

S×S → Z. An element σ ∈ Sk is called a cell of dimension k (and we write dimσ = k).
The pair (S, κ) is called S-complex if the following properties are satisfied:

1. ∀σ, τ ∈ S, κ(τ, σ) 6= 0 =⇒ dim τ = dimσ + 1 ;

58

2. ∀ρ, τ ∈ S,
∑

σ∈S κ(τ, σ)κ(σ, ρ) = 0.

Under these conditions, κ is called the incidence function of the S-complex (S, κ).

Definition 2.5. Let (S, κ) be an S-complex. The associated chain complex is the pair
(Ck(S), ∂k)k∈N where

• Ck(S) the free Abelian group generated by the elements of Sk,

• the boundary map ∂k : Ck(S)→ Ck−1(S), ∀τ ∈ Sk, is determined by

∂k(τ) =
∑
τ∈S

κ(τ, σ)σ

Thanks to Definition 2.4, it is easy to prove the following result.

Proposition 2.6. Let (S, κ) be an S-complex. Then, (Ck(S), ∂k)k∈N is a chain complex.

Then, we can define the homology groups of an S-complex (S, κ) as the homology groups
of the chain complex (Ck(S), ∂k)k∈N and we can denote them Hk(S).

The concept of S-complex can be related to the notion of simplicial complex, regular
grid and cell complex. An S-complex is only a reformulation of a (free) chain complex,
because the map κ may be viewed as the matrix of the boundary map. For example, given
a simplicial complex Σ, we can see it as S-complex by setting:

• Sk the set of k-simplices of Σ,

• ∀σ, τ ∈ Σ, τ = [v0, · · · , vk],

κ(τ, σ) =

{
(−1)i if σ = [v0, · · · , v̂i, · · · , vk]
0 otherwise

Consider Σ as a simplicial complex or as an S-complex leads in both cases to the same
chain complex and then to the same homology groups.
For our purposes, in the following, we can intuitively consider an S-complex as a simpli-
cial complex in which some simplices may be not present even if their cofaces are in the
complex.

Reductions and coreductions
The simplification operators used in [MB09] to reduce the size of the input simplicial
complex are reductions and coreductions.
At the topological level, the case of a reduction corresponds to a deformation retraction of
a free face onto the complex. The problem is that in most situations free face reductions
are quickly exhausted. In order to overcome this problem, coreductions have been intro-
duced. A coreduction is the dual operation with respect to reduction, but is not possible
in a standard simplicial complex, while it is available in the context of the S-complexes.
In order to formally introduce the operators of reduction and coreduction, we need to
define the notion of boundary and coboundary of a cell.

59

Definition 2.7. Let (S, κ) be an S-complex and let σ be a cell of S. We call the following
sets of cells respectively (immediate) boundary and (immediate) coboundary of σ with
respect to S.

bdS σ := {ρ ∈ S |κ(σ, ρ) 6= 0}

cbdS σ := {τ ∈ S |κ(τ, σ) 6= 0}

Definition 2.8. Let (S, κ) be an S-complex and let (σ, τ) be a pair of elements of S such
that κ(τ, σ) = ±1. We define (σ, τ)

a reduction pair if cbdS σ = {τ},

a coreduction pair if bdS τ = {σ}.

(a)

(b)

Figure 2.3: On the left, the pairs denoted as (σ, τ) represent for the corresponding S-
complexes a reduction pair (a) and a coreduction pair (b), respectively. On the right, the
removals of the reduction pair (a) and of the coreduction pair (b) have been performed.
Empty vertices and hashed edges represent missing cells.

Even if in the context of the S-complexes our geometrical intuition of homology gets lost,
the removal of a reduction or a coreduction pair always preserves homological informa-
tion.

Theorem 2.9. ([MB09], Thm. 4.1; [MW10], Thm. 2.8). Let (S, κ) be an S-complex
and let (σ, τ) be a pair of elements of S. If (σ, τ) is a reduction or coreduction pair in S,
then (S ′ := S \ {σ, τ}, κ′ := κ|S′×S′)k∈N is an S-complex. Furthermore, for each k ∈ N,
Hk(S) and Hk(S

′) are isomorphic.

In Figure 2.3, an example of removal of a reduction and of a coreduction pair is depicted.

Coreduction homology algorithm
The simplest reduction algorithm consists in considering all the cells of an S-complex and
performing reductions whenever a reduction pair is found. In Figure 2.4, we illustrate this
approach starting from a simplicial complex. However, there are at least two problems
with this algorithm: the depth of the reduction crucially depends on the order in which the
cells are analyzed and the output of the algorithm could produce an S-complex not much
smaller than the initial one. Consider now the outcome of the reduction algorithm applied

60

Figure 2.4: An example of reduction operations. In the last complex, no more reduction
is available.

to the considered example from the point of view of possible coreductions. First recall
that a simplicial complex Σ cannot admit a coreduction pair, because the cardinality of the
boundary of any k-simplex is k+ 1 if k > 0 or 0 for a vertex. However, if we consider the
augmented chain complex associated with the simplicial complex Σ, i.e., if we assume
that the empty set is an additional simplex of dimension −1 which is in the boundary of
all vertices, then the situation becomes different. Every vertex becomes a simplex with
the empty set as the unique element in the boundary and then at least a coreduction is
admitted. Having replaced the original chain complex with its augmented version, we
will obtain an S-complex whose homology corresponds to the reduced homology H̃k(Σ)
of Σ.

In our example, the resulting sequence of coreductions is presented in Figure 2.5. The
outcome is an S-complex consisting of exactly two cells of dimension 1, whose boundary
is null. Therefore, these cells are also homology generators and obviously there are no
more homology generators.

Note that, if the starting simplicial complex has more than one path-connected component,
then the above procedure works only for the connected component of the vertex which
has been paired with the empty set. A straightforward remedy is to add one extra cell
in dimension −1 for each connected component with its coboundary consisting of all
vertices in this component.

Homology generators. Being interested in computing the generators of each homology
group, explicit formulas for the isomorphism established in Theorem 2.9 are required.
For this, let (S, κ) be an S-complex, (σ, τ) a reduction or coreduction pair in S and
S ′ = S \ {σ, τ}.

Let ψ(σ,τ)
∗ : C∗(S)→ C∗(S

′) , ι(σ,τ)
∗ : C∗(S

′)→ C∗(S) be two chain maps defined by

61

Figure 2.5: An example of coreduction operations. The missing vertices are marked with
empty circles and the missing edges with thin lines.

ψ
(σ,τ)
k (c) =


c− 〈c,σ〉

〈∂τ,σ〉∂τ if k = dim τ − 1

c− 〈c, τ〉τ if k = dim τ

c otherwise

ι
(σ,τ)
k (c) =

{
c− 〈∂c,σ〉〈∂τ,σ〉τ if k = dim τ

c otherwise

where 〈 , 〉 represents the scalar product between two chains.

The chain maps ψ(σ,τ)
∗ and ι

(σ,τ)
∗ establish a homology equivalence between the chain

complexes C∗(S) and C∗(S ′) stated in Theorem 2.9. Furthermore, since ψ(σ,τ)
∗ · ι(σ,τ)

∗ =
idC∗(S′), the homology generators of S can be retrieved by computing the generators of S ′

and applying to them the map ι(σ,τ)
∗ .

Previous results allow to define an algorithm for efficient computation of the homology,
called coreduction homology algorithm (see [MB09]).

In order to compute the homology of an S-complex S, the strategy is to reduce S as
much as possible obtaining a smaller S-complex T and to compute its homology groups
through the Smith reduction algorithm. So, since the complexity of Smith’s algorithm is
super-cubical in the number of cell of the complex (see [Sto96]), the complexity of the
presented algorithm will be O(|T |α) where α ' 3, 376.

From a theoretical point of view, it is possible to exhibit examples where only the trivial
coreduction which involves the empty set is available and so |T | is equal to |S| − 1.
But, from an application point of view, the coreduction homology algorithm allows us to
obtain an S-complex T which cannot be reduced further and whose size is significantly

62

smaller than the size of the starting S-complex S. For example, in the case of regular
grids, numerical experiments have shown that one can assume

|T | ' |S|
d−1
d

where d is the dimension of the original complex S. By considering this assumption, the
complexity of finding homology is O(|S|α d−1

d) (see [MB09], Thm. 8.3) and this means
that the algorithm is particularly efficient for low-dimensional complexes.

If we are also interested in the retrieval of the homology generators of S, providing of the
homology generators of T , we have to compute their images under the maps ι∗. It can
proven (see [MW10], Thm. 3.1) that the cost of this procedure is bounded byO(|S|w(S))
where w(S) is the maximum number between the faces and the cofaces of a cell of S.
Hence, in many practical contexts, we can consider constant this number and assume that
the retrieval of the homology generators of the input S-complex S runs in linear time.

Persistent homology computation through reductions and coreductions. The above
approach can be easily adapted to the context of the persistent homology computation
[DW+14]. Analogously to the approaches based on acyclic subcomplex, a compatibility
condition between the simplification operators and the filtration F of the input simplicial
complex Σ can be introduced. Both for a reduction and a coreduction pair (σ, τ), the
compatibility condition with the filtration is the request that the simplices σ and τ appear
at the same step of the filtration. More formally, there must exist m ∈ {1, . . . ,M},
such that σ, τ ∈ Σm but σ, τ 6∈ Σm−1. Under such assumption, it has been proven that the
persistent homology groups of the filtered complex Σ and the ones of the reduced complex
with respect to the filtration naturally induced by F are the same up to isomorphisms. So,
persistent homology computation of a filtered simplicial complex can be easily redirected
to the one of the fully reduced and coreduced complex.

2.3.3.3 Approaches based on edge contractions

Another strategy to preprocess a simplicial complex in order to apply the Smith Normal
Form reduction for a smaller input is based on edge contractions. As in the previous case,
we define a topological operator, called edge contraction, which preserves the homology
of the original simplicial complex. Unlike coreductions, this operator brings a simplicial
complex into an other without losing the simplicity of the resulting complex. This sub-
section is mainly inspired by [ALS11], and [DEGN99].

Let Σ be a simplicial complex and let Σ0 be the set of its vertices. Consider u, v ∈ Σ0

and w 6∈ Σ0. In order to describe the edge contraction of uv into w, we define the vertex
map fV that takes vertices u and v to w and takes all other vertices to themselves. We
consider the simplicial map f naturally induced by the vertex map fV . Given a simplex
σ = v0 · · · vk in Σ, we have that f(σ) = fV (v0) · · · fV (vk).

Definition 2.10. According to the above notation, the edge contraction of uv into w is the
operation that given a simplicial complex Σ returns its image Σ′ under the simplicial map
f , i.e., Σ′ = {f(σ) |σ ∈ Σ}.

63

By construction f is surjective and Σ′ is a simplicial complex. Note that the edge con-
traction of uv into w is well defined even when uv is not an edge of Σ.

The main result about edge contraction states the required hypotheses ensuring this oper-
ator is homology-preserving. Recall that, given a simplex σ of a simplicial complex Σ,
we denote as linkΣ σ the simplicial complex {σ′ ∈ Σ |σ′∪σ ∈ Σ, σ′∩σ = ∅} consisting
of all the simplices not incident in σ and face of a coface of σ.

Theorem 2.11. (Link condition, [ALS11], Thm. 1). Let Σ be a simplicial complex. The
contraction of the edge uv ∈ Σ preserves the homology whenever

linkΣ uv = linkΣ u ∩ linkΣ v

Theorem 2.11 ensures that an edge contraction satisfying the link condition preserves ho-
mology groups. Notice that, in general, the converse is not true. So, there exist cases in
which link condition is not satisfied but the application of the correspondent edge con-
traction does not affect the homology of the simplicial complex. Examples of homology-
preserving and of homology-modifying edge contraction are depicted in Figure 2.6.

Figure 2.6: Simplices underlined in green, blue and red represent the link of u, v and
uv, respectively. Above, the edge contraction of uv into w performed on a configuration
satisfying the link condition and so homology-preserving. Below, the edge contraction of
uv into w which modifies the homology of the simplicial complex and so not satisfying
the link condition.

By using Theorem 2.11, we are able to understand when edge contraction is a homology-
preserving operator. This topological operator can be implemented and allows reducing
the size of a simplicial complex without losing simpliciality. For this reason, it could be
useful in a preprocessing algorithm for homology computation.

As far as we know, in the literature, there is no approach that retrieves persistent homol-
ogy by exploiting operators of edge contraction. In spite of this, we believe that, similarly
to how it has been made for reduction and coreduction operators in [DW+14], a suit-
able compatible condition between an edge contraction operator and a filtered simplicial
complex could be defined.

64

2.3.3.4 Approaches based on discrete Morse theory

A discrete Morse complex associated with a simplicial complex Σ provides a compact
homology-equivalent model of Σ. This equivalence allows us to compute the homol-
ogy of Σ by applying the SNF reduction algorithm on the discrete Morse complexM∗
instead of on C∗(Σ). Since the number of critical simplices generatingM∗ is usually neg-
ligible with respect to the number of simplices of Σ, this method considerably improves
the efficiency of homology computation. By adding some further compatibility condi-
tions, the same reducing strategy can be used to efficiently retrieve persistent homology
of a filtered simplicial complex.
In the literature, several algorithms, based on the discrete Morse theory, have been de-
veloped to retrieve standard and persistent homology [RWS11, HMMN14, HMM+10].
They mainly differ for the method used to build the discrete Morse complex. The algo-
rithms proposed in [HMMN14, HMM+10] exploit coreduction operators to compute a
gradient vector field. In [RWS11], the input complex is endowed with a scalar function
on its vertices inducing a filtration on the whole complex and the gradient vector field is
retrieved by an algorithm partitioning the complex through the lower stars of its vertices.
The method introduced in [RWS11] has also a theoretically relevance. It has been proven
that, for regular cell complexes up to dimension 3, the gradient vector field is in some
sense optimal with respect to the chosen filtration. In fact, each critical cell of the discrete
Morse complex induces a change in the homology of the complex providing a relevant
contribute in the persistent homology groups.

In this subsection, we consider the discrete Morse complex associated with a (filtered)
simplicial complex as an input. We will focus on the algorithms to actually build it in
Subsection 2.4.3.

Homology generator computation through discrete Morse theory
The homological equivalence between chain complexM∗ and simplicial complex Σ im-
plies that, by using the SNF reduction algorithm, we are able to obtain the simplicial
homology of Σ. The homology generators of degree k are computed through SNF re-
duction. Their geometric realization is obtained starting from the critical k-simplices of
V and navigating the gradient pairs. Computing the homology generators corresponds to
computing the cells of the descending Morse complex.

The computation of a descending k-cell starts from a critical k-simplex σ. All the (k−1)-
simplices in the immediate boundary of σ are then selected and, among them, only the
(k − 1)-simplices paired with a k-simplex different from σ are considered. Such k-
simplices are inserted into a queue, and the traversal of the complex Σ continues in a
breadth-first fashion until all the V -paths starting from σ have been visited. In 2D, for
example, we start from a critical 2-simplex (maximum) σ and, by following the gradient
pairs, we continue adding adjacent 2-simplices until all V -paths from σ have been tra-
versed.

65

The computation of the descending Morse complex is performed through constant time
operations at each simplex on the visited V -paths. In 2D, the extraction of a descending
k-cell requires linear time in the number of simplices of Σ forming the k-cell since each
simplex is visited at most once. As we will discuss in Section 2.4, in three dimensions and
higher, visiting the gradient paths among saddles may have a cubical time complexity.

Persistent homology through discrete Morse theory
As shown in [MN13], discrete Morse theory can be used to efficiently compute persistent
homology. Let Σ be a simplicial complex and consider a filtration F = {Σm | 0 ≤ m ≤
M} of Σ.

A gradient vector field V of Σ is a filtered gradient vector field of F if, for each pair
(σ, τ) ∈ V , there exists m ∈ {1, . . . ,M} such that σ, τ ∈ Σm and σ, τ /∈ Σm−1.

Let us denote V m as the pairs of V whose elements are in Σm.

Proposition 2.12. ([MN13], Prop. 4.2). For each m,Mm
∗ = (Mm

k , ∂̃k|Mm
k

)k∈N, where
Mm

k is the free Abelian group generated by the simplices of Σm not in V m, is a chain
complex and {Mm

∗ | 0 ≤ m ≤M} is a filtration ofM∗.

It is possible to extend Theorem 1.48 to the level of persistent homology.

Theorem 2.13. ([MN13], Thm. 4.3). Let F = {Σm | 0 ≤ m ≤ M} be a filtration of the
simplicial complex Σ endowed with a filtered gradient vector field V . Then, for all m, k
and p,

Hp
k(Σm) ∼= Hp

k(Mm
∗)

Analogously to the standard homology case, Theorem 2.13 allows to speed up persistent
homology computation. In fact, once a discrete Morse complex associated with a fil-
tered gradient vector field has been built, one can retrieve persistent homology groups by
applying a matrix reduction algorithm.

2.3.4 Distributed approaches

Another strategy to efficiently recollect homology of a cell complex which is able to
handle huge data is the distributed homology. The aim of this class of approaches is to
partition a simplicial complex or its boundary matrices into local pieces, compute the ho-
mology of each piece in parallel and glue the pieces together by retrieving the homological
information of the original object.

2.3.4.1 Constructive Mayer-Vietoris algorithm

A first modular algorithm for homology computation of simplicial complexes is the so-
called constructive Mayer-Vietoris (MV) algorithm. This algorithm has been introduced
in [BCA+11] and it has also been the main topic of my Master Thesis [Fug12]. The

66

constructive MV algorithm has been developed for standard homology and, up to now, no
extension to persistent homology computation has been proposed.

Given a topological space, the most common tool in algebraic topology to split it in two
parts in order to retrieve the homology of the original space is through the Mayer-Vietoris
sequence. The following theorem, whose proof can be found in [Mun84], Thm. 25.1,
describes this tool in the case of a simplicial complex.

Theorem 2.14. (Mayer-Vietoris sequence). Let Σ be a simplicial complex. Let A and
B be subcomplexes of Σ such that Σ = A ∪ B. Then, we have the short exact sequence

0→ C∗(A ∩ B)
i−→ C∗(A)⊕ C∗(B)

j−→ C∗(Σ)→ 0

which induces the following exact sequence in homology

· · · → Hk(A ∩ B)→ Hk(A)⊕Hk(B)→ Hk(Σ)→ Hk−1(A ∩ B)→ · · ·

called the Mayer-Vietoris sequence of (A,B).

Figure 2.7: A triangulated sphere S2 and an its decomposition in two subcomplexes A
and B.

In some cases, as in the one depicted in Figure 2.7, the exactness of the Mayer-Vietoris
sequence provides us an easy way to compute simplicial homology. If, for instance, the
Mayer-Vietoris sequence contains

· · · → 0→ Hk(Σ)→ 0→ · · ·

we can immediately conclude that Hk(Σ) = 0. But, if

· · · → 0→ Z2 → Hk(Σ)→ Z2 → 0→ · · ·

appears in the Mayer-Vietoris sequence, we are not able to conclude if Hk(Σ) ∼= Z4 or if
Hk(Σ) ∼= Z2 ⊕ Z2.

This problem is due to the non-constructiveness of the proposed method and for this
reason we are not able, using the introduced tools, to implement an algorithm based on
the Mayer-Vietoris sequence.

67

Constructive Algebraic Topology
In order to turn Mayer-Vietoris sequences in a constructive method, several theoretical
notions and results have to be introduced (see [RS99, RS12] for a detailed discussion).

A first important tool is the notion of reduction of chain complexes. Informally, a reduc-
tion ρ : C∗ V C ′∗ is a homology equivalence between a "large" chain complex C∗ and a
"small" one C ′∗. The equivalence provided by a reduction allows to completely retrieve
the homological information, homology generators included, of a chain complex from the
knowledge of the same information of the other chain complex. The most common exam-
ple of reduction is the reduction naturally induced by the Smith Normal Form reductions
of the boundary maps of a chain complex C∗. It is called homological Smith reduction
and denoted by ρ : C∗ V EC∗.

Another important concept is the notion of cone of a morphism. Let A∗ = (Ak, d
A
k)k∈Z

and B∗ = (Bk, d
B
k)k∈Z be two chain complexes and φ : A∗ → B∗ be a chain map between

them. We call cone of φ the chain complex Cone(φ) whose group of k-chain isBk⊕Ak−1

and kth boundary map is given by the matrix:

dCk :=

(
dBk φk−1

0 −dAk−1

)
i.e., if a ∈ Ak−1, b ∈ Bk, we have dCk (b, a) = (dBk (b) + φk−1(a),−dAk−1(a)).

These tools combined together bring to the proof of the following theorem which repre-
sents the basis of the constructive MV algorithm.

Theorem 2.15. (Short exact sequence, [BCA+11], Thm. 5.5). Let Σ be a simplicial
complex, let A and B be subcomplexes such that Σ = A ∪ B. The short exact sequence
of Mayer-Vietoris defined as

0 // C∗(A ∩ B)
i
// C∗(A)⊕ C∗(B)

j
//

τoo C∗(Σ)
σoo // 0

is an effective short exact sequence of chain complexes and so, it produces the reduction

ρ : Cone(i) V C∗(Σ)

Constructive MV algorithm
We can now describe the idea on which the constructive MV algorithm is based. First
of all, the algorithm computes the homological Smith reductions of the chain complexes
associated with A and B. Then, by deeply exploiting the notions and the theorems just
introduced, the following equivalence of reductions is obtained.

C∗(Σ) W Cone(i) V E(Cone(Ei))∗

From this equivalence, knowing the homology of A and B, it is immediate to retrieve the
homology and the homology generators of Σ.
The constructive MV algorithm just presented, here described only in the case of a de-
composition of Σ in two pieces, can be generalized for a decomposition with an arbitrary
finite number of components (see [Fug12]).

68

Manifold-connected decomposition. From a theoretical point of view, the constructive
MV algorithm can be performed using any kind of decomposition. Since the small size
of the intersections between the components helps to reduce the execution time, the algo-
rithm has been implemented using the manifold-connected decomposition (introduced in
[DMMP03]). In a simplicial d-complex Σ, a (d− 1)-simplex σ is called manifold if there
are at most two d-simplices of Σ incident in σ. We call manifold (d− 1)-path a sequence
consisted of adjacent manifold (d− 1)-simplices of Σ.

Definition 2.16. A simplicial d-complex Σ in which every pair of d-simplices are con-
nected by a manifold (d − 1)-path, is called manifold-connected complex (MC complex)
of dimension d.

(a) (b)

Figure 2.8: An example of an MC decomposition: a hollow ball that is pinched at the top
and has a circular ring (a), its MC decomposition into three manifold-connected compo-
nents (b).

It is easy to prove that any simplicial complex Σ has a unique decomposition in MC
complexes called MC decomposition (see Figure 2.8 for an example).
As mentioned above, the limited size of the intersections between the MC components on
which the simplicial complex is partitioned has led to elect the MC decomposition as the
adopted subdivision criterion in the constructive MV algorithm.

In [BCA+11], an implementation of a constructive MV algorithm based on the MC de-
composition has been developed and compared with the SNF reduction algorithm. Ex-
perimental evaluations have revealed that the considered distributed approach leads to a
reduction in the storage cost and in the computational time.

2.3.4.2 Multicore homology

In the literature, another algorithm, similar to the constructive MV algorithm, has been de-
veloped to retrieve the homological information of a simplicial complex in a distributed
fashion [LZ14, ZC08]. In this work, the authors design and implement a framework,
called multicore homology, for parallel computation of persistent homology over field co-
efficients.

69

The main tool used in [LZ14] is the blowup complex (see Figure 2.9). Given a cover of the
input complex, a blowup complex is a space homologically equivalent to the input com-
plex which organizes the various subspaces needed for employing the global homology
reconstruction. Intuitively, it is built by cutting the input complex into the components in
which the cover splits it and connect them along their intersections by “bridges" which
allow to duplicate cells belonging to more than one component of the cover.
Blowup complex dues its name to the fact that, given an arbitrary cover of a shape con-
sisting of n components, the resulting blowup complex can be 2n times larger than the
original complex. In spite of the algorithm never explicitly encodes the blowup complex,
its potentially huge size affects the efficiency of the algorithm. For this reason, even if the
presented algorithm is theoretically valid for any cover defined on the space, in [LZ14]
a cover based on graph partitions, producing a blowup complex at most 3 times larger
respect to the input complex, has been proposed. Moreover, the authors show that finding
a cover which minimizes the size of the blowup of a complex is NP-hard.

(a) Space and cover (b) Local pieces (t = 0) (c) Blowup complex (t = 1)

Figure 2.9: Given a space equipped with a cover (a), first blow up the space into local
pieces (b) and then glue back the pieces to get the blowup complex (c), giving a filtration
consisting of two complexes at times t = 0 and t = 1, respectively.

The main steps of the multicore homology algorithm are the following (see Figure 2.9).
First at all, given a cover of the input complex, the complex is split into the components
provided by the cover and the homology of each local piece is independently computed.
After this process, the blowup complex is built. By computing its persistent homology
with respect to a particular filtration, blowup complex allows glueing the homological
information of each components quickly retrieving the homology of the input complex.

Localized homology through multicore homology. Another task of multicore homol-
ogy algorithm is also to retrieve localized homology generators. As mentioned in Sub-
section 1.2.2, the localization problem is determining the location of topological features
within a simplicial complex.
In [ZC08], given a simplicial complex Σ and a cover, a homology class of Σ is defined
to be local if it exists in one of the pieces of the cover. Given a cover, persistent homol-
ogy can be used to determine whether a homology class is local. This method provides
an algorithm for generating a homology basis localized with respect to the chosen cover.
Actually, the blowup complex has the same homology as the original space but, also in-
corporates the geometric cover information within its structure. By computing persistent
homology, one can retrieve homology bases for the blowup complex that are compatible
with bases for the local pieces. These localized homology generators naturally reflect the

70

quality of the given cover, and covers that reflect the geometry of the simplicial complex
give better descriptions.
In spite of this interesting attempt, an efficient method to effectively retrieve localized
homology of a simplicial complex of arbitrary dimension has yet to come.

2.3.4.3 Approaches based on spectral sequences

The mathematical notion of spectral sequence [McC01] allows to retrieve homological
information by taking successive approximations. Furthermore, it revealed to be a pow-
erful tool for parallelizing the computation of persistent homology.

A first algorithm based on spectral sequences has been proposed in [EH08]. It divides the
boundary matrix of a filtered simplicial complex into blocks and reduces them from the
diagonal outwards in different phases that can be executed in parallel.

Analogously to this latter, the algorithm introduced in [LSVJ11] exploits spectral se-
quences to retrieve persistent homology groups in a distributed manner. It adopts a
divide-and-conquer strategy by locally computing information and glueing them together.
To achieve this result, differently from other parallelizable methods, it does not use the
Mayer-Vietoris long exact sequence but a spectral sequence generalizing it. After divid-
ing the filtered simplicial complex in input according to a cover, the spectral sequence
generates a chain complex, called total complex similar to the blowup complex used in
[LZ14]. The knowledge of the total space gives the machinery necessary to iteratively
compute better approximations of the global persistent homology of the filtered complex
from the local persistence computations in each components of the cover. In spite of the
main focus of the algorithm in [LSVJ11] is on the glueing step more than in the dividing
one, some methods to subdivide the input complex have been proposed. The introduced
covers, called cube, Voronoi and geodesic Voronoi partitions, minimize the size of the
intersections in order to maximally parallelize the computation.

2.3.4.4 Approaches based on a matrix partition in chunks

Recently, the class of the methods performing a distributed computation of the persistent
homology has been enriched by two new algorithm [BKR14a, BKR14b].

The algorithm introduced in [BKR14a], called chunk algorithm, is very interesting be-
cause of its correlations with several other approaches. For instance, it generalizes the
methods based on discrete Morse theory, is closely related to the spectral sequence algo-
rithm [EH08] and employs various practical optimization strategies.
The two main contributions of this approach are:

• the introduction of two simple optimization techniques of the standard reduction
algorithm, called clearing and compression, that significantly reduce the number of
operations on real-world instances;

71

• the definition of an algorithm incorporating both the optimizations and also suitable
for parallelization.

Besides the worst-case complexity bound is not improved, practical experiments show
that significant speed-ups can be achieved through this parallelized approach.

Further improvements to this distributed method have been introduced and discussed in
[BKR14b]. The good results reached thanks to these optimizations reveal that in the (per-
sistent) computation the limiting factor is the memory available on the computer rather
than the time spent for the calculation.

2.3.5 Annotation-based approaches

Most algorithms for computing topological features of a simplicial complex, such as (co)-
homology, persistence and localized homology, have to efficiently reveal the indepen-
dence or not of a set of cycles. In order to solve this problem, the notion of annotation has
been introduced [BCC+12]. An annotation is just a map which assign a (binary) vector
to each simplex of a simplicial complex. In this way, it provides the coordinate vector of
the homology class of each cycle z in a homology basis and thus, helps us to determine
efficiently the topological characterization of z.

In this subsection, first, we formally introduce the notion of annotation and then, we de-
scribe how persistent homology computation can be obtained thanks to the use of annota-
tions. For a more detailed discussion about annotations, we refer to [BCC+12, BDM13,
DFW12].

2.3.5.1 Annotations

Given a simplicial complex Σ, let Σk denote the set of k-simplices in Σ and let F be an
arbitrary field.

Definition 2.17. An annotation for Σk is a function ak : Σk → Fg. It assigns a vector
aσ := ak(σ) of same length g for each k-simplex of Σ.

An annotation for Σk induces in a natural way an annotation for the set of k-chains of Σ.
Let c be an element in Ck(Σ;F), c =

∑q
i=1 fiσi with fi ∈ F, σi ∈ Σk. We can assign to c

vector ac :=
∑q

i=1 fiaσi .

Definition 2.18. An annotation ak : Σk → Fg is called valid if the following conditions
are satisfied:

• g = dimFHk(Σ;F);

72

• given two k-cycles z1 and z2, we have that

az1 = az2 ⇐⇒ [z1] = [z2]

i.e., z1 and z2 belong to the same homology class.

An example of a valid annotation with F = Z2 is depicted in Figure 2.10. It is easy to
notice the role of annotations to reveal the independence of cycles: 1-cycles only includ-
ing the left hole have annotation value (0, 1), the ones only including the right hole have
value (1, 0), the ones including both the holes take value (1, 1), while the 1-cycles not
including any hole have as annotation the null vector (0, 0).

Figure 2.10: A simplicial complex endowed with a valid annotation with F = Z2.

The notion of annotation was introduced in [BCC+12] as a tool for computing localized
homology. In [BCC+12], the authors propose an algorithm speeding up the computation
of an optimal basis for the 1-dimensional homology of a simplicial complex by retrieving
a valid annotation of its edges. Furthermore, they provide a method to build a valid anno-
tation for simplicial complexes of any dimension. In spite of this, the proposed method
has a high computation time. A more efficient way to build a valid annotation has been
introduced with the purpose of speed up persistent homology computation [BDM13]. We
describe this method in the next subsection.

2.3.5.2 Persistent homology through annotations

Aside from its importance for quickly checking the independence of cycles, annotations
have also further deep connections with homology. Given a simplicial complex Σ and an
annotation ak : Σk → Fg, it is possible to define, for each i = 1, . . . , g, a homomorphism
φi : Ck(Σ;F) → F. Given a k-simplex σ ∈ Σk, φi(σ) is defined to be aσ[i], the ith

element of aσ.

Proposition 2.19. ([DFW12], Prop. 3.3). The following statements are equivalent.

• An annotation ak : Σk → Fg is valid.

• The cochains φi, i = 1, . . . , g, are cocycles whose cohomology classes [φi], i =
1, . . . , g, constitute a basis of Hk(Σ;F).

73

As already mentioned, by taking coefficients in a field, standard and persistent homology
groups of a simplicial complex are isomorphic to standard and persistent cohomology
groups [DMVJ11].
This duality in combination with Proposition 2.19 is the basis for two algorithms based
on annotations for computing persistent homology.

Persistent cohomology algorithm
The algorithm described in [BDM13] retrieves persistent homology of a filtered simplicial
complex by iteratively updating a valid annotation of its simplices.
Let Σ be a simplicial complex and let ∅ = Σ0 ⊆ Σ1 ⊆ · · · ⊆ ΣM = Σ be a filtration of
Σ such that Σm+1 = Σm ∪ {σ} with σ a k-simplex. Assume that, for any dimension, a
valid annotation am is attached to the simplicial complex Σm. We describe how to obtain
a valid annotation am+1 of Σm+1.
We compute the annotation am∂σ and take actions as follows:

Case 1: am∂σ = 0. We have that

am∂σ = 0 ⇐⇒ [∂σ] = [0] in Σm ⇐⇒ βΣm+1

k = βΣm

k + 1

Then, the annotation vector of any k-simplex σ′ ∈ Σm is augmented with a 0 entry
so that, if amσ′ = (f1, . . . , fg), am+1

σ′ is defined to be (f1, . . . , fg, 0). To the new
simplex σ is assigned the annotation vector am+1

σ = (0, . . . , 0, 1). According to
Proposition 2.19, this is equivalent to creating a new cohomology class represented
by the homomorphism φ such that φ(σ′) = 0 for σ′ 6= σ and φ(σ) = 1.

Case 2: am∂σ 6= 0. We have that

am∂σ 6= 0 ⇐⇒ [∂σ] 6= [0] in Σm ⇐⇒ βΣm+1

k−1 = βΣm

k−1 − 1

Then, we consider the non-zero element fj of am∂σ with maximal index j. We now
look for annotations of those (k − 1)-simplices τ that have a non-zero element at
index j and process them as follows. If the element of index j of amτ is f 6= 0, we
add − f

fj
am∂σ to amτ . As a result, amτ [j] becomes 0 for each (k − 1)-simplex τ . We

define am+1
τ removing the jth entry of the annotation vector of any (k− 1)-simplex

and set g ← g − 1. We assign to σ the null annotation vector am+1
σ = 0. According

to Proposition 2.19, this is equivalent to removing the jth cocycle φj .

As with the standard algorithm, persistent homology is derived from the creation and
destruction of the cohomology basis elements.

Complexity and implementation. In order to actually implement this approach, effi-
cient data structures encoding the simplicial complex Σ and the annotation vectors as-
sociated with each simplex of Σ have to be developed. For each dimension k, the kth

cohomology group can be seen as a valid annotation for the k-simplices of the simplicial
complex. Hence, an annotation ak : Σk → Fg can be represented as a g×|Σk|matrix with

74

(a) (b)

Figure 2.11: The only two possibility of elementary inclusion of a 2-simplex. In (a),
according to Case 1, the new simplex increases β2. In (b), according to Case 2, the new
simplex decreases β1.

elements in F, where each column is an annotation vector associated with a k-simplex.
In most applications, the annotation matrix is sparse and has a lot of duplicate columns.
In order to obtain an implementation with good performances, it is necessary to represent
this annotation matrix in an efficient way called compressed annotation matrix.
A column is represented as the singly-linked list of its non-zero elements, where the list
contains a pair (j, f) if the jth element of the column is f 6= 0. The pairs in the list are
ordered according to row index j. All pairs (j, f) with same row index j are linked in a
doubly-linked list. To avoid storing duplicate columns, we use two data structures. The
first one, AV , stores the annotation vectors and allows fast search, insertion and deletion.
AV can be implemented as a red-black tree or a hash table. The simplices of the same
dimension that have the same annotation vector are now stored in a same set and the sets
are stored in a union-find data structure.
Let d be the dimension of the simplicial complex Σ and n the number of its simplices.
Let gn and sn be the maximal dimension of a cohomology group and the maximal number
of distinct columns in the matrix, respectively, along the computation. The total cost for
computing the persistent cohomology and the memory complexity for storing the com-
pressed annotation matrices are respectively

O(n[Cd∂ + d(α(n) + gn) + sn(gn + CAV + α(n))]) and O(n+ dgnsn)

where Cd∂ is the complexity of compute the boundary of a d-simplex, α is the inverse
Ackermann function and CAV is the complexity of an operation in the data structure AV
which encodes the annotation vectors. Specifically, implementing Σ using an Incidence
Graph and the AV as hash tables, we get Cd∂ = O(d) and CAV = O(gn). If we consider
α(n) as a small constant and remove it for readability, we get that the total cost for com-
puting persistent cohomology is O(ngn(d + sn)). Experimental results show that gn and
sn remain small in practice. Hence, the practical complexity of the algorithm is linear in
n for a fixed dimension.

Persistent homology for simplicial maps
While persistent homology handles filtrations only consisting of inclusion maps, the main
purpose of the algorithm proposed in [DFW12] is to generalize this situation in order to
compute homology modification induced by an arbitrary simplicial map. In [DFW12], it
has been proven that any simplicial map f : Σ→ Σ′ can be considered as a composition of
elementary simplicial maps. Similarly to [BDM13], by studying how a valid annotation

75

can be consistently updated after the application of an elementary simplicial map, one
can completely describe the homology modifications occurred from Σ to Σ′ after the
application of simplicial map f : Σ→ Σ′.

2.3.6 Software tools for homology and persistent homology compu-
tation

Several software tools for computing homology and persistence homology, have been de-
veloped and distributed in the public domain. In [OPT+15], a comparative analysis of
such tools is presented. We refer to it for a complete discussion of such tools. The main
goal of most of these tools is the retrieval of persistent homological information with
respect to Zp coefficients. The input of such tools is usually a simplicial complex or a
regular grid endowed with a filtration or, alternatively, a set of points from which recon-
struct a filtered complex. In most of the cases, the computation of standard homology is
achieved by endowing the input complex with a trivial filtration and performing on it the
algorithm to retrieve persistent homology.

We can classify software tools computing persistent homology as follows:

• tools based on matrix reduction algorithm,

• tools exploiting coarsening and pruning approaches,

• tools based on annotations.

The first class consists of tools which directly work with the boundary matrices of a cell
complex. We need to mention here: javaPlex [TVJA12], GAP persistence [VJ12] and
Dionysus [Mor12], which exploit the algorithms proposed in [ZC05] and the optimiza-
tions introduced in [DMVJ11, MMS11]; PHAT [BKRW14], which implements most
of the optimization techniques proposed in literature, including the approach based on
chunks [BKR14a] and the one using spectral sequences [LSVJ11]; DIPHA [BKR14b],
which retrieves persistent homology groups through a distributed computation; PHOM
[Tau11], written in R, that implements the standard [ZC05] and the dual [DMVJ11] algo-
rithms.
The constant growth of the size of the data has led to the development of another class of
tools focused, not on new optimizations of the matrix-based algorithm retrieving persis-
tent homology, but, mainly, on a preliminary simplification step reducing the size of the
input complex without altering its topological features. Such a strategy is adopted by the
software libraries RedHom [JM14] and Perseus [Nan]. The first one is based on reduction
and coreduction operators for the simplification step and it uses PHAT for the persistent
homology computation. The second one preliminary reduces the size of the input com-
plex via discrete Morse theory and then retrieves persistent homology by exploiting the
algorithm proposed in [ZC05].
A third class of tools is based on the use of annotations. According to this strategy, Gudhi
[MBGY14] and SimpPers [DFW12] compute persistent homology through annotation

76

vectors and encode a simplicial complex through the Simplex Tree data structure [BM12]
instead of using the Incidence Graph as all the above mentioned libraries. Furthermore,
the software Gudhi includes the implementation of the multi-field algorithm proposed in
[BM14].

2.4 Algorithms rooted in Morse and discrete Morse the-
ories

Morse theory allows to associated with a shape a complex leading the same topological
information of the original object. In this section, we classify and describe the algorithms
developed in the literature for building a Morse complex. This classification keeps in
consideration various discretizations of Morse theory. Furthermore, since in many real
situations the noise in the data leads to the computation of a Morse complex with a too
large number of cells, we briefly introduce and discuss the techniques used in the literature
to simplify it.

Most of the contributions of this section have been collected in two surveys [DFIM15,
DFI15]. The first one gives a general and complete overview about algorithms rooted in
Morse theory and in its discretizations [DFIM15]. The second one is mainly devoted to
the discrete Morse theory and to the homological shape analysis [DFI15].

2.4.1 Classification

The algorithms for computing Morse complexes can be classified based on different crite-
ria, such as the input they accept, the output they generate, and the algorithmic approach
they apply (for a more detailed discussion see [ČDMI14]).

These algorithms may differ in:

• the dimension d of the shape on which a scalar field is defined (they may be specific
for d = 2 or d = 3, or be dimension-independent);

• the discretization of the underlying shape (simplicial complex, regular grid);

• the required properties (e.g., no flat edges).

Algorithms may also differ in:

• the information computed (ascending/descending Morse complex, or Morse-Smale
complex);

• the output format (e.g., the cells of such complexes are described as collections of
vertices or d-cells of the original complex).

Based on the algorithmic technique they apply, we have the following classification.

77

• Boundary-based approaches, which are based on piecewise linear Morse theory,
and compute the Morse-Smale complex by constructing the separatrix lines (in 2D),
or the separatrix lines and surfaces (in 3D).

• Region-growing approaches, which are generally based on piecewise linear Morse
theory, and compute the ascending (or descending) Morse complex by growing the
top cells, here called regions, from seeds located at the minima (or maxima).

• Watershed approaches, which are based on the discrete watershed transform, and
compute the ascending Morse complex.

• Forman-based approaches, which are based on Forman’s discrete Morse theory.

2.4.2 Algorithms based on piecewise linear Morse theory and on wa-
tershed transform

In this subsection, we briefly describe the algorithms for computing a Morse complex
based on the piecewise linear Morse theory and on the watershed transform. As mentioned
above, we classify such algorithms into boundary-based, region-growing and watershed
approaches.

2.4.2.1 Boundary-based algorithms

Boundary-based algorithms have been developed for triangle and tetrahedral meshes and
for 2D and 3D regular grids. Such algorithms compute an approximation of the Morse-
Smale complex through its 1-skeleton in 2D and through its 2-skeleton in 3D.

In the 2D case, a boundary-based algorithm generally performs two major steps:

1. vertex classification to extract maxima, minima, and saddles;

2. path computation: starting from each saddle, ascending separatrix lines are traced
until they reach a maximum, and descending separatrix lines are traced until they
reach a minimum.

In the smooth case, two ascending and two descending paths are incident in each saddle.
In the discrete case, the number of ascending/descending paths in a saddle can be larger.
A saddle of multiplicity equal to k has k + 1 ascending and k + 1 descending paths
(k + 1 = 2 for simple saddles). Thus, the boundary-based algorithms unfold multiple
saddles into simple saddles.

Path tracing should follow the steepest ascent/descent of the function. In the discrete
case, this latter may be approximated in different ways. Takashahi et al. [TIKU95] move
from the current vertex to its highest/lowest adjacent vertex. Edelsbrunner et al. [EHZ01]
consider the edge slopes, and move from the current vertex v to its higher/lower adjacent
vertex connected to v through the steepest edge. Such algorithms, which compute sepa-
ratrix lines by following the edges of the triangle mesh, do not guarantee that traced lines

78

have the steepest ascent/descent. Bremer et al. [BEHP04] and Pascucci et al. [Pas04]
consider the slope of both edges and triangles, and allow separatrix lines to cross trian-
gles. Because tracing separatrix lines across triangles is computationally intensive, de
Berg et al. [dBT11] present a hybrid approach which tries to balance computation time
and precision.

The approach in [EHZ01] has been extended to 3D [EHNP03]. Given a tetrahedral mesh,
the algorithm computes the 1- and 2-cells which bound the 3-cells in the Morse-Smale
complex. The extracted complex has the correct combinatorial structure described by a
quasi-Morse-Smale complex. Two sweeps are performed over the input mesh. The first
sweep (by decreasing function value) computes the descending 1- and 2-cells, and the
second sweep (by increasing function value) computes the ascending 1- and 2-cells.

Boundary-based algorithms on regular grids are based on the construction of interpolating
functions within each top cell. Two conflicting issues arise: the need of avoiding, or
limiting, the creation of new critical points, and that of guaranteeing a certain degree of
continuity on the whole domain.

Bajaj et al. [BPS98] use a globally C1-differentiable Bernstein-Bezier bi-cubic function
for two-dimensional regular grids, and a tri-cubic function for 3D regular models. They
define an algorithm to reduce the number of newly introduced critical points.

Schneider and Wood [SW04, Sch05] propose two methods for 2D regular grids. The
first one uses a bilinear C0 interpolating function on each top cell, which, thus, cannot
introduce additional minima or maxima, but may introduce saddles. The second method
uses a bi-quadratic approximation on each top cell. No new critical point is introduced, but
the resulting approximation is globally discontinuous, formed by local surface patches.

All algorithms trace four separatrix lines from each saddle point, which can follow grid
edges, or go through 2-cells. Both function derivatives and separatrix lines are computed
numerically in [BPS98]. The two algorithms in [SW04, Sch05] compute derivatives an-
alytically. The algorithm in [Sch05] uses this information to trace the separatrix lines,
while the algorithm in [SW04] uses a step-by-step numerical procedure.

2.4.2.2 Region-growing algorithms

Region-growing algorithms operate on triangle or tetrahedral meshes, and compute the
top cells of the ascending (descending) Morse complex, called regions, expanding an
initial seed, i.e., the minimum (or maximum) the top cell is associated with. This class of
algorithms is mostly based on piecewise-linear Morse theory.

Regions are collections of triangles (for 2D scalar fields) or tetrahedra (for 3D scalar
fields) from the underlying mesh Σ: each triangle or tetrahedron t ∈ Σ is labeled by
the minimum (or maximum) associated with the region containing t. The only exception
is the 3D algorithm by Gyulassy et al. [GNPH07]. We focus here on the computation
of the descending Morse complex. The computation of the ascending Morse complex is
completely dual.

In the two-dimensional case, a region-growing algorithm conceptually contains two major

79

steps:

1. extraction of seed vertices;

2. region-growing: from each seed, the corresponding region is built by iteratively
adding triangles which are edge-adjacent to it.

In the two algorithms by Danovaro et al. [DDM03b, DDM+03a], the two steps are inter-
laced: a seed is extracted and its region is immediately grown. Each new seed p is the
vertex with maximum function value among the ones with unclassified incident triangles.
The region γ of p is initialized with unclassified triangles incident in p and grown by
adding edge-adjacent triangles. The algorithm in [DDM03b] decides on adding a triangle
t based just on function values, whereas the one in [DDM+03a] uses a discrete gradient
defined over triangles. As extracted seeds include other vertices besides the maxima of f ,
a final merging of regions is required. The algorithm in [DDM03b] works for tetrahedral
meshes as well, and can be extended to higher-dimensional scalar fields.

The algorithm in [MDD+09] first extracts all seeds, which are the maxima of function
f . Then, their regions are computed one at a time in any order. Similarly to [DDM03b],
the criterion for adding a triangle t to γ is based just on function values, but it is less
restrictive and permits to build the entire region of a maximum. This algorithm accepts
triangulated surfaces with flat edges, by using ad-hoc solutions for handling plateaus.

The algorithm in [GNPH07] computes all the i-cells of the 3D Morse-Smale complex (for
all dimensions i = 0, 1, 2, 3) as collections of vertices, i.e., through vertex labeling. First,
minima are found and an ascending 3-cell is grown from each of them. Then, ascending
2-cells are built starting from boundary vertices of 3-cells. Finally, ascending 1-cells are
built starting from boundary vertices of 2-cells. Descending 3-, 2-, and 1-cells (in this
order) are computed inside the ascending 3-cells using the same approach in a symmetric
way. This algorithm has been presented for 3D scalar fields, but it can be extended to
higher dimensions.

2.4.2.3 Watershed algorithms

As described in Section 1.3.2.2, given a labeled graphH = (NH , AH , f), watershed algo-
rithms produce the ascending Morse complex as a classification of the nodes of H: each
node p is labeled with the minimum corresponding to the ascending top cell containing
p. Some methods produce so-called watershed nodes, which lie on the boundary between
two or more top cells. Watershed algorithms work on regular grids of any dimension or
on simplicial meshes. In the first case, they label the top cells of the complex. In the latter
case, the nodes in NH are the vertices of the underlying mesh Σ, the arcs in AH are the
edges of Σ, and the output is a vertex classification.

Watershed algorithms are usually based on topographic distance [Mey94], on simulated
immersion [VS91, Soi04], or on rain falling simulation [MW99, SS00]

Watershed algorithms based on topographic distance directly apply the definition of catch-
ment basin in terms of topographic distance and shortest paths (see Section 1.3.2.2). The

80

image integration algorithm by Meyer [MB90, Mey94] is a variation of the Dijkstra-
Moore algorithm [Dij59] for computing the shortest path from a source node to every
other node in a graph. In this case, the topographic distance is used. The hill climbing
algorithm [Mey94] is a simplified version of image integration, which applies to regu-
lar grids, since the distance between two adjacent top cells p and q in domain space is
constant.

The intuitive idea behind the simulated immersion approach [VS91, Soi04] is that of let-
ting water raise from local minima, and label as watershed those nodes of graph H where
water coming from different minima merge. The algorithm expands catchment basins by
processing the nodes of H by increasing function value. In the stage in which a certain
function value h is processed, all catchment basins of minima with value h′ < h have
been started and, up to now, contain just nodes with function values lower than h. Pro-
cessing function value h will add new nodes to existing basins, and will start new basins
from minima having a function value equal to h.

Watershed approaches presented so far have in common the idea of growing catchment
basins upwards from the minima of f . The rain falling paradigm [MW99, SS00] uses the
opposite idea of letting water fall down from each vertex until it reaches at a minimum.
The advantage of the rain-falling approach is that it does not require a preliminary sorting
of the vertices, nor a priority queue. The main steps of the rain falling algorithm are:

1. find the minima and label each minimum as belonging to the basin of itself;

2. for each node v, which is still unlabeled, start descending from v to its lowest neigh-
bor u, continue until an already labeled vertex u is found, and give the label of u to
all traversed nodes.

The algorithm by Mangan and Whitaker [MW99] is for triangle meshes, and the one by
Stoev and Strasser [SS00] for regular grids. An implementation of the rain-falling simu-
lation for triangle meshes has been used in [MDI13], where triangles are then classified
based on the labels of their vertices. A similar approach can also be applied for tetrahedral
meshes [Iur14].

2.4.2.4 Analysis and comparison

Some algorithms applied to meshes consider both the field difference between two ver-
tices, and their distance in domain space [EHZ01, BEHP04, Mey94]. Other algorithms
simply consider field difference. The two boundary-based algorithms in [TIKU95,
EHZ01], and the two region-growing ones in [DDM03b, DDM+03a] just differ in this
aspect. Note that the two approaches are equivalent on a regular grid.

Region-growing and watershed methods compute the top cells of the Morse complex
through a classification of the top cells of the input complex, and, thus, their accuracy
cannot go beyond the granularity of the input scalar field model. Boundary based algo-
rithms exist which do the same, or trace separatrix lines also inside top cells, thus splitting
an input triangle or pixel across several output top cells [BEHP03, Pas04]. These latter
algorithms are less efficient, but avoid a number of violations, such as a path from a

81

saddle reaching another saddle before arriving at its final maximum or minimum, two
overlapping paths in opposite directions, and regions bounded by extracted lines having a
disconnected interior.

Boundary-based algorithms guarantee that saddles lie on the 1-cells of the output com-
plex. As two paths going in the same direction join before reaching their final maximum or
minimum, 2-cells bounded by such lines may be non-manifold because of so-called dan-
gling edges. Region-growing methods suffer of the opposite problem. They build 2-cells
that are 2-manifold by construction, but saddle vertices may not lie on their boundary.

Region-growing and watershed approaches do not extract the Morse-Smale complex,
which can be obtained by intersecting the top cells of the Morse complexes. On the con-
trary, boundary-based approaches can easily produce the ascending or descending Morse
complex by simply tracing just separatrix lines in one direction.

All algorithms based on locally steepest descent, including algorithms for computing the
Forman gradient (see Subsection 2.4.3.1), do not converge to the ground truth smooth
function when the underlying discrete domain is refined. Intuitively, the gradient of the
input data is affected by a sampling error (due to the data points) and by a quantization
error (due to the limited directions of the edges incident in each point). Although the
sampling error can be decreased using a denser sampling, this is not the case for the
quantization error. For watershed based algorithms, this problem has been studied in
[SCP08] where an improved technique is proposed based on a probability propagation
scheme. New techniques have also been developed for algorithms computing a Forman
gradient [GBP12, RGH+12].

2.4.3 Algorithms rooted in discrete Morse theory

Algorithms based on discrete Morse theory do not compute Morse, or Morse-Smale com-
plexes explicitly, but compute a Forman gradient V from which all the cells of the Morse
and Morse-Smale complexes can be extracted if needed. Such algorithms are purely
combinatorial, dimension-independent and independent of the type of underlying cell
complex. Note that algorithms based on piecewise linear Morse theory are dimension-
specific, and specific for simplicial meshes or regular grids. Furthermore, algorithms
based on discrete Morse theory can provide all the cells of both the Morse and the Morse-
Smale complexes, whereas watershed algorithms compute only the Morse cells.

When working with a Forman gradient, all the Morse and Morse-Smale cells are obtained
by traversing the V -paths of the gradient in a dimension-independent way. Some algo-
rithms [RWS11, SMN12, SN12, WIFD13] have been defined for computing a Forman
gradient on real world datasets and then are easily parallelizable or have been specifically
developed for distributed computation. We can classify algorithms for Forman gradient
computation into two categories: constrained algorithms [CCL03, KKM05, GBHP11,
RWS11, GBP12, GRWH12, SMN12, SN12]; and unconstrained algorithms [LLT03,
MB09, MW10, DKMW11, HMMN14, BL14].

Constrained algorithms start from a discrete scalar function f defined over the vertices
of a cell complex Γ, and aim at constructing a Forman gradient that best fits function f .

82

They focus on extracting a minimum number of critical simplices in order to avoid spu-
rious cells in the Morse complexes [RWS11, GBP12], or they perform a-posteriori sim-
plifications to reduce them [KKM05, GBHP11]. The typical applications for constrained
algorithms are data analysis and visualization, since a Forman gradient provides a com-
putationally efficient way for extracting the Morse and Morse-Smale cells representing
the regions of influence of the critical points.

Unconstrained algorithms, on the other hand, compute a Forman gradient on a cell com-
plex when no information about the Forman function is provided. Here, a Forman gradient
is extracted with the aim of computing homology and persistent homology of the original
complex. The focus of these algorithms is computing a pairing for all the cells of the
input cell complex while leaving as few unpaired cells as possible. In [LLT04], Lewiner
et al. presented the first algorithm of this type, and showed applications to topology visu-
alization and mesh compression.

A challenging problem, when working with a Forman gradient V , is traversing the V -
paths in order to extract information about the Morse or Morse-Smale complexes. In the
case of constrained algorithms, traversing the V -paths corresponds to building a segmen-
tation of the underlying shape into Morse or Morse-Smale complexes. In an unconstrained
algorithm, V -paths are used for computing homology or homology generators of the un-
derlying cell complex. In 2D, all V -paths can be visited in linear time by traversing all cell
pairs at most once. However, for extracting only separatrix V -paths, the gradient paths
between saddles and maxima can be visited in reverse order, thus reducing the numbers of
pairs to be visited. In higher dimensions the situation is more involved. We will describe
in details the algorithms proposed for the efficient extraction of Morse and Morse-Smale
complexes from a Forman gradient [GBP12, GRWH12, SN12, WIFD13] in Subsection
2.4.3.2.

Both constrained and unconstrained algorithms are involved, with a different flavor, in
persistent homology computation. In constrained approaches, the values of function f at
the vertices of cell complex Γ naturally induce a filtration of Γ. In [RWS11], for example,
the generic element Γm of the filtration induced by the input function f on Γ is the cell
complex containing all the cells of Γ that have no vertex with a function value greater than
m. This choice guarantees that each cell of the discrete Morse complex corresponds to a
change in topology between successive cell complexes of the filtration. In unconstrained
approaches, the filtration is set as input, and the construction of the Forman gradient has
to comply with the given filtration [MN13, DW+14].

2.4.3.1 Computing the discrete Morse gradient

In this subsection, we present first an encoding for the discrete Morse gradient field for a
simplicial complex and then we describe algorithms for computing it.

Forman gradient encoding on simplicial complexes
Since a Forman gradient field is a collection of pairs of cells on a cell complex Γ, we need
a representation for Γ in which all cells are explicitly encoded as well as their mutual
incidence relations, as in the Incidence Graph (IG) (see Subsection 2.1). The Forman

83

gradient can be easily implemented on the IG as a Boolean function associated with its
arcs. For a regular grid, all such relations are encoded implicitly by indexing the cells of
the grid. Moreover, since a Forman gradient V defines a pairing between incident cells,
V can be defined as a bit vector based on the same indexing [GRWH12].

For simplicial complexes, a data structure encoding all simplices and their incidence re-
lations is too verbose. Other data structures exist for simplicial complexes, which encode
only vertices and top simplices [DH05, CDW11], thus being much more compact, and
scalable with the dimension. For simplicial complexes of dimension 2 and 3, an encoding
for the Forman gradient on such data structures has been developed [FlDFW14, WIFD13].
It is called a compact gradient and associates the gradient pairs to the top simplices.
The use of such data structures with the compact gradient makes the computation of the
Forman gradient and of the Morse and Morse-Smale complexes feasible on simplicial
complexes on large size. The compact encoding associates with σ a subset of the pairs
involving its faces, namely, all pairs in the discrete vector involving σ or two of its bound-
ary simplices. In 2D, a triangle has 12 possible pairs for a total of 212 = 4, 096 cases.
However, for a Forman gradient, there are only 97 valid cases for a triangle. Thus, all
possible configurations can be encoded by using only one byte per triangle. Similarly, in
3D, there are 32 pairs for a total of 232 = 4, 294, 967, 296 possible configurations, and the
valid ones are only 51, 030, thus they can be represented with 2 bytes per tetrahedron. We
refer to [FlDFW14, WIFD13] for details.

Constrained algorithms
Several algorithm have been recently developed in the literature to compute a Forman
gradient when a scalar value is given at the vertices of a cell complex [CCL03, KKM05,
GBHP11, RWS11, GBP12, GRWH12, SMN12, SN12]. Such algorithms have been gen-
erally developed in 2D or 3D, and mainly on regular grids.

The algorithm proposed in [CCL03] builds a Forman gradient from a triangle mesh Σ
endowed with a scalar function, which in this case is the discrete Connolly’s function f
[Con86]. Function values are extended to edges and triangles as mean value of their inci-
dent vertices. They consider the primal graph H of Σ, which is the graph having as nodes
the vertices of Σ and as arcs its edges, and the dual graph HD of Σ defined as the graph
having as nodes the triangles of Σ and the arcs in one-to-one correspondence with edge-
adjacent triangles. A spanning forest TD is created by building a spanning tree on HD for
each local maximum of f on Σ, processing the edges by increasing function value. In a
dual fashion a spanning forest T is built on H by creating a spanning tree for each local
minimum. The resulting Forman gradient V is computed considering T and TD. Roots of
T are the minima (vertices), roots of TD are the maxima (triangles) and edges that do not
belong to either T and TD are the saddles. The V -paths of V formed by vertices and edges
correspond to paths from a root of T to one of its leaves, while V -paths formed by edges
and triangles correspond to the paths from a root of T ′ to one of its leaves. The algorithm
can be extended to d-dimensional complexes but only by restricting to the computation of
the pairings between 0-simplices and 1-simplices (forming V -paths connecting minima to
1-saddles) and between (d − 1)-simplices and d-simplices (forming V -paths connecting
maxima to (d− 1)-saddles).

84

The algorithm proposed in [KKM05] takes as input a scalar function f defined over the
vertices of a 3-dimensional simplicial complex Σ. The algorithm builds the gradient vec-
tor field in the lower link link− v of each vertex v in Σ, where the lower link link− σ of
a simplex σ is the subset of the link of σ containing only simplices with a function value
less than or equal to the function value of σ. Then, it extends this function to the cone
(v; link− v), which is the simplex generated by the union of the vertices of v and link− v.
The Forman gradient computed in this way may have an arbitrary large number of crit-
ical simplices compared with the number of actual critical points of the original scalar
function f . Thus, the algorithm performs a simplification step for reducing the number of
critical cells [For98].

The algorithm proposed by Gyulassy et al. in [GBHP08] is one of the first algorithms
defined in a dimension independent way. It computes a Forman gradient starting from a
d-dimensional regular grid H with scalar function f defined at the vertices of H . Func-
tion f is extended to a Forman function F , defined on all cells of H , such that F (η′) is
slightly larger than F (η) for each cell η′ and each face η of η′. For such function F , all
cells of H are critical. A gradient vector field is computed by assigning gradient arrows
in a greedy manner during sweeps over the cells of H according to increasing values of
dimension and of F . Each current non-paired and non-critical cell in the sweep is paired
with its coface having only one face not marked (as critical or as already paired). If there
are several of such cofaces the lowest one is taken. If there is no such coface, the cell
is critical. Pairs built in this way define a gradient vector field. The order in which the
cells in H are processed is not deterministic, since different k-cells in H may have the
same value of function F . As a consequence, some unnecessary critical cells may be pro-
duced by the algorithm. In [SMN12] and [SN12], a similar approach based on a weighted
discrete function has been defined for computing a Forman gradient on 2D and 3D reg-
ular grids, respectively. The pairs found by the algorithm are unique and independent of
the order in which the cells are considered, thus providing a basis for a parallelization of
the algorithm. In [GBP12], a similar algorithm is proposed which focuses on improving
the poor geometric approximation of the gradient caused by the local assignment of the
gradient arrows. This is especially useful in scalar field analysis, but not for homology
computation.

In [RWS11], a dimension-independent algorithm is proposed for a regular grid with scalar
function values given at its vertices. In [FlDFW14, WIFD13], this algorithm has been im-
plemented for simplicial complexes in 2D and in 3D by developing very compact repre-
sentations for the underlying complex, leading to the first efficient algorithm for Forman
gradient computation on simplicial complexes. The algorithm processes the lower star of
each vertex v in Γ independently, where the lower star star− p of a cell p is the subset
of the star of p containing only cells with a function value less than or equal to the func-
tion value of p. Each cell p is considered in ascending order of function values and of
dimension, such that each cell p is considered after its faces. All the k-cells incident in
the lower star are paired via homotopy expansion. Two cells, k-cell p and (k + 1)-cell q,
are paired via homotopy expansion when: p have no unpaired boundary cells and q has

85

only one unpaired boundary cell (i.e., p).

Table 2.2 summarizes the algorithms discussed in this section. The only dimension-
specific algorithms are the one in [CCL03] specifically defined for 2D simplicial com-
plexes, and the one in [KKM05]. The gradient computation in the algorithm by Kings et
al. [KKM05] could be extended to higher dimensions but the simplification step could
be problematic in higher dimensions. All of them are implemented for specific com-
plexes (regular grids [GBHP08, RWS11] or simplicial complexes [CCL03, KKM05]).
Algorithms implemented for regular grids are typically used for the analysis of gridded
volume datasets. However, since they all rely on discrete Morse theory, they can be easily
adapted to cell complexes.

Algorithm Input Time Complexity

Cazals et al. [CCL03] 2D simplicial complex Σ O(|Σ|(log|Σ|+ α(|Σ|)))
King et al. [KKM05] 3D simplicial complex Σ O(|Σ0|s)
Gyulassy et al. [GBHP08] nD cell complex Γ O(|Γ|log|Γ|)
Robins et al. [RWS11] nD cell complex Γ O(|Γ0|c)

Table 2.2: Summary of the reviewed algorithms. For each of them the expected input and
the worst time complexity are indicated. Note that |X| denotes the cardinality of set X ,
and X0 is the set of the vertices of X .

We can classify the algorithms described above in two groups based on their time com-
plexity. Some of them [KKM05, RWS11] are based on an implicit subdivision of the cells
of the complex into independent sets (based on the vertices). Both algorithms consider
each cell, in the independent set, exactly once. Since all the operations performed are in
constant time, the complexity is only dependent on the number of simplices s [cells c]
in each independent set. In most of applications, s and c are considered negligible with
respect to the number of vertices v and thus the complexity of the entire process is con-
sidered linear. The algorithms in [CCL03, GBHP08, GBP12], instead, require as initial
step a sorting of the simplices. In [CCL03], all the edges are sorted (with O(|Σ|log|Σ|)
complexity) and a further step, for the forest creation, is performed in O(|Σ|α(|Σ|)) with
α the inverse of Ackerman’s function. Algorithms in [GBHP08, GBP12] sort the cells
based on the Forman function defined starting from the function defined on the vertices.

Unconstrained algorithms
Several algorithms have been proposed for computing a Forman gradient on a cell com-
plex without any constraint such as a scalar value at the vertices of the complex.

The algorithm by Lewiner et al. [LLT03] has been the first algorithm of this kind proposed
in the literature with the aim of providing a combinatorial descriptor for 3D shapes. It has
been defined on triangle meshes and then extended to 2-dimensional cell complexes Γ.
The algorithm is similar to the one described in [CCL03], but here the spanning forests are
built by considering a spanning tree for each connected component of the shape, without
ordering the edges of Γ based on a function value.

86

Several algorithms have been proposed based on two simplification operators, called re-
duction and coreduction respectively, which delete a pair of cells from a cell complex Γ
while preserving the homology groups of Γ (see Subsection 2.3.3.2). Even if these two
operators have been defined as simplification operators, they can be seen as pairing oper-
ators for building a Forman gradient V on Γ. Once Γ has been fully simplified, obtaining
a simplified cell complex ΓS , the gradient V corresponds to the cell pairs eliminated and
the cells in ΓS to the critical cells of V . Here, we describe these algorithms presenting a
dual strategy for computing the Forman gradient [HMM+10, BL14].

In [BL14], an algorithm based on the reduction operator has been proposed for the con-
struction of a Forman gradient. The algorithm builds a gradient vector field V on a cell
complex Γ by using reduction pairs and removals of top cells. The algorithm works as
follows. V is initialized as the null set. Let us denote as Γ′ the set of non-excised cells of
Γ and initialize it as Γ. While Γ′ admits a reduction pair (p, q), the algorithm excises cells
p and q from Γ′ and adds the pair (p, q) to set V . When no more reduction is feasible, a
top cell is excised from Γ′, which becomes a critical cell. The main loop of the algorithm
is iterated until Γ′ is empty.

The algorithm proposed in [HMM+10, HMMN14] also combines a homology-preserving
operator with the construction of a Forman gradient on a cell complex. In this case, the
operator involved in the computation of the Forman gradient is coreduction. A coreduc-
tion [MB09] can be viewed as the dual with respect to a reduction and the two operators
combined represent a powerful preprocessing tool to efficiently compute the homology of
a cell complex, as described in [MB09, MW10, DKMW11].

In [HMMN14], a Forman gradient is built by removing coreduction pairs and free cells,
where a free cell is a cell with an empty boundary. In this approach a gradient vector
field V on Γ is built as follow. The algorithm looks for available coreduction pairs in the
complex. While a coreduction pair is feasible, the pair is excised from the cell complex
and it is added to V . When no more coreduction pair is available, a free cell is excised
from the complex and considered as a critical cell. The algorithm iterates this process
until no more cells can be considered.
Accurate analysis and comparisons of the two approaches have been performed in the
context of simplicial complexes in [FID14] and they will be presented in Chapter 3.

2.4.3.2 Computing and representing the discrete Morse complex

The Morse Incidence Graph (MIG) [ELZ02, BEHP04, GKK+12, ČomićDI13] is an ef-
ficient graph-based representation for a Morse complex. The MIG associated with a
d-dimensional descending and ascending Morse complexes is a graph G = (N,E, µ).
The set of nodes N is partitioned into d + 1 subsets N0, N1, . . . , Nd, such that there is a
one-to-one correspondence between nodes in Nk (alsa called k-nodes) and critical k-cells
V . There is an arc joining an k-node σ with a (k + 1)-node τ if and only if there is a
V -path connecting k-saddle σ to (k + 1)-saddle τ . Each arc connecting a k-node σ to an
(k+ 1)-node τ is labeled by the number of V -paths connecting τ to σ. The label, denoted
as µ(τ, σ), is also called the multiplicity of the arc (σ, τ).

87

In the applications, attributes are attached to the nodes in N and arcs in E storing the geo-
metric information associated with the Morse cells. In [BEHP04, GKK+12], geometrical
entities of both the ascending and descending Morse cells are explicitly stored, associated
with the nodes in N , as well as the 1-cells forming the 1-skeleton of the Morse-Smale
complex associated with each arc of E. In [ČomićDI13], only a subset of the Morse cells
geometries are stored, namely the descending [ascending] d-cell for each node inNd [N0].

The incidence relations in the MIG are computed by traversing the V -paths of the com-
pact gradient V defined on Γ, computing all the Morse cells in one of the two complexes,
creating one node for each critical cell and connecting two nodes in the graph with an arc
if there is a V -path in V connecting the two corresponding critical cells [WIFD13]. Since
only V -paths are needed, ad-hoc strategies can be used to reduce the number of cells tra-
versed. In 2D, the set of V -paths between saddles and minima are visited by starting from
each critical 1-cell and following the gradient paths until a minimum is reached. Such
paths never branch and, thus, a limited number of 1-cells are visited in practice during
their traversal.

The extraction of such subgraphs (also called extremum graphs) is performed in a dimen-
sion-independent way, leading to the same reduction in complexity. In three and higher
dimension, a new step is introduced to compute the saddle connectors, i.e., the arcs of the
MIG between k-saddles σ and (k + 1)-saddles τ , with k 6= 0, d. All the gradient paths
starting from τ are considered, and all the traversed (k+1)-saddles are marked as visited.
Then, starting from σ the same process is performed visiting the gradient paths in reverse
order and considering only those paths passing by the (k + 1)-cells previously marked as
visited are considered.

In three and higher dimensions gradient paths can branch and merge potentially resulting
in many-to-many adjacency relationships between critical k-cells and critical (k + 1)-
cells. Let us consider a simplicial 3-complex Σ with n0 vertices, whose Forman function
contains O(n0) critical 1-cells, each of which connects to O(n0) critical 2-cells. This
produces a discrete Morse complex containing O(n2

0) gradient paths between critical 1
and 2-simplices. Since the number of critical 1- and 2-cells is bounded by v, the number
of traversals for any cell during the breadth-first search is also bounded by n0 and so the
complexity of the whole extraction process isO(n3

0). In the literature, some solutions have
been proposed to reduce the time required for extracting Morse cells between 1-saddles
and 2-saddles [GRWH12, SN12, WIFD13]. In [WIFD13, GRWH12], the space complex-
ity of the algorithm is slightly increased for saving the k-cells visited during a gradient
path traversal. In this way, no cell is visited more than once and the time complexity
drops to O(n2

0). This method works well when the computation of the saddle connectors
is sequential, but the memory increase becomes too high for a parallel implementation.
In [SN12], an algorithm is proposed, specific for parallel computation, with an imple-
mentation on 3D regular grids. The algorithm is based on a priority queue which allows
counting the number of times a cell is visited, i.e., each cell is inserted in the queue only a
constant number of times and the complexity of the resulting algorithm has been proven

88

to be O(n2
0 log n0).

2.4.4 Simplification of Morse and Morse-Smale complexes

Due to the huge size of available data sets and to the presence of noise, morphological de-
scriptions of scalar fields may contain many uninteresting features. Thus, a fundamental
issue is the simplification of such descriptions.
We give here a brief overview on various simplification algorithms proposed in the liter-
ature and we refer to Chapter 5 to a complete discussion about the problems affecting the
simplification process.

In the literature, several strategies have been proposed for simplifying the morphological
representation of a dataset [BDF+08, DFIM15]. We refer to [Iur14] for a detailed dis-
cussion. The problem of simplifying a Morse-Smale complex has been addressed in 2D
[EHZ01, BEHP04, WG09], 3D [GKK+12, GRWH12] and in nD [ČomićD11].
Each simplification algorithm consists in the iterated application of a simplification op-
erator. The most common simplification operator, called cancellation, has been defined
in Morse theory for removing pairs of critical points connected by a unique separatrix
line [Mat02]. A discrete counterpart of this operator, eliminating pairs of critical cells
connected by a unique separatrix V -path, has been introduced in [For98].
A common characteristic of all simplification algorithms is the ordering of the available
simplifications based on a priority schema. Priority measures the importance of pairs of
critical points which are candidate for deletion, and is defined in such a way to cause the
removal of less important critical pairs first. Algorithms have been proposed based on
different priority measures. Persistence [ELZ02] is the most widely used; it estimates the
importance of a pair of critical points according to the absolute difference of function val-
ues between the two points. More recently, other methods for measuring the importance
of pairs of critical points have been proposed with the purpose of taking into account also
the geometry of the underlying complex, namely separatrix persistence [WG09, GSW12]
and topological saliency [DSNW13].

We distinguish between two types of algorithms for simplifying a Morse complex: al-
gorithms working on a graph-based representation of the complex [BEHP04, GKK+12,
ČomićDI13] (also called explicit methods), like the Morse Incidence Graph, and algo-
rithms based on the Forman gradient [WG09, GRWH12, FlDFW14] (also called implicit
methods). All algorithms for 2D scalar fields are equivalent in the sense that they can pro-
duce the same simplification sequence, and the resulting simplification process is mono-
tonic, i.e., after each simplification, all the new simplifications have higher persistence
value. Differences arise when working in three or higher dimensions (see [GRSW13] and
Chapter 5).

In [BEHP04, GKK+12], two data structures have been defined implementing the graph
representation for triangle meshes and for regular grids, respectively. In both cases, geo-
metric attributes of the Morse cells and of the 1-skeleton of theMS complex are explicitly

89

encoded (i.e., vertices, edges, triangles and voxels forming such cells). Simplifications
are performed by deleting nodes in pairs and merging together the geometrical represen-
tations of the Morse cells. In [ČomićDI13], a lightweight version of the same structure
has been used encoding only the d- and 0-cells of the two Morse complexes, all the other
cells being retrieved by intersection. However, since this latter operation is particularly
time-consuming, the resulting data structure is less significative for practical usage.

Algorithms defined in [WG09, FlDFW14, GRWH12] take full advantage of the For-
man gradient for defining a simplification algorithm with a low storage consumption.
In [WG09, FlDFW14], simplifications are performed on the Forman gradient defined on
a 2D regular grid and on a 2D simplicial complex, respectively. In [GRWH12], a similar
simplification algorithm is implemented for the Forman gradient defined on a 3D regular
grid. Due to the above mentioned inconsistency problem, that we closely discuss in Chap-
ter 5, the incidence relations among the critical simplices need to be locally recomputed
after each simplification.

2.5 Concluding remarks

In this chapter, we have provided a complete overview on several topics related to the
work developed in this thesis. The comparisons and the considerations presented in this
chapter have played a fundamental role in the development of the remainder of the thesis.

The analysis of different topological data structures (Section 2.1) has led us to con-
sider data structures encoding only vertices and top simplices when dealing with high-
dimensional simplicial complexes [FID14, FIDon]. The brief overview on multi-resolu-
tion models (Section 2.2) has taught us to manage differently the geometrical and mor-
phological modifications in a hierarchical model.
The analysis of the algorithms for retrieving standard and persistent homology (Section
2.3) and for computing Morse complexes (Section 2.4) has provided us with several tools
useful for the entire research.

An overview on software tools for the computation of standard and persistent homology
has been presented in [OPT+15]. A survey concerning the various algorithmic approaches
and strategies to retrieve homological information is lacking in the literature. The classi-
fication proposed in Section 2.3 represents a step in this direction. In the near future, we
plan to further develop such analysis and to collect its contribution in a survey paper.

The overview on Morse theories presented in Section 2.4 has led to [DFIM15, DFI15].
Note that Section 2.4 does not deal with the investigation of Morse functions having a
minimal number of critical cells. This topic will be considered and discussed from an
algebraic point of view in Chapter 6.

90

Chapter 3

Homology Computation through
Discrete Morse Theory

As mentioned in the introduction, recently there is a growing need to handle high-dimen-
sional data originated from huge and unorganized clouds of points and to efficiently ex-
tract topological information from them [OPT+15]. In this context, several mathematical
tools representing simplicial complexes of large size thanks to a topologically-equivalent
and more compact object, such as the discrete Morse complex [For98], the size graph
[FP99] and the tidy set [Zom10b], have been proposed.
Discrete Morse theory is a very powerful and adaptable tool. It is theoretically indepen-
dent from the dimension of the complex and it provides a complex whose size is smaller
than the original one but still preserving its topological features. In the literature, the
importance of discrete Morse theory has been acknowledged in various application do-
mains such as scalar field and function analysis [DFIM15] and computation of standard
and persistent homology [RWS11, HMMN14, HMM+10]. The purpose of this chapter
is to develop tools for efficiently computing a gradient vector field of a simplicial com-
plex retrieving the associated discrete Morse complex and to show some applications,
such as persistent homology computation, in which the knowledge of the discrete Morse
complex reveals to be useful. To achieve this goal, connections between the effect of
homology-preserving operators and the creation of gradient of a discrete Morse func-
tion have been studied and used for efficiently retrieving the topological information of
a simplicial complex. Given the huge size of the complexes to be handled, the need of
an efficient and compact data structure able to encode them and their associated gradient
vector field naturally arises.
This chapter tries to give an answer to these questions by

• describing, introducing and formally comparing various methods to endow a sim-
plicial complex with a gradient vector field;

• encoding the obtained discrete Morse complex thanks to efficient, compact and
dimension-independent representations for the Forman gradient and for the under-
lying simplicial complex;

• developing and implementing an algorithm to build a discrete Morse complex based

91

on the above methods and data structures;

• applying the proposed algorithm to efficiently retrieve the persistent homology of
the original simplicial complex.

The contributions and the results described in this chapter are presented in [FID14, FI-
Don].

3.1 Discrete Morse complexes through reductions and co-
reductions

Given a simplicial complex Σ, a Forman gradient on Σ can be built by using some
homology-preserving operators. In this section, we present two methods exploiting re-
ductions and coreductions to retrieve a gradient vector field (see Subsection 2.3.3.2 or
refer to [HMMN14, BL14]). Furthermore, we propose another strategy to built a Forman
gradient through homology-preserving operators and we provide a theoretical comparison
about all these techniques.

3.1.1 Using coreduction sequences or reduction sequences

In this subsection, we briefly recall the definitions of reduction and coreduction and we
describe two unconstrained approaches exploiting these operators to build a gradient vec-
tor field. As mentioned in Subsection 2.3.3.2, reduction and coreduction operators can
be used in a preprocessing approach to compute homology or persistent homology of a
simplicial complex, as described in [MB09, MW10, DKMW11, HMMN14, MN13].

Reductions and coreductions represent two operators for reducing the size of an S-complex
without affecting its homology. Since we will work only with simplicial complexes, we
can consider for simplicity an S-complex as a simplicial complex in which some simplices
may be not present even if their cofaces are in the complex. Given a simplicial complex
Σ (where eventually some simplices have been removed), a pair (σ, τ) of simplices of Σ,
such that 〈∂τ, σ〉 = ±1, is called:

• a reduction pair if cbdΣ σ = {τ},

• a coreduction pair if bdΣ τ = {σ},

where 〈∂τ, σ〉 represents the coefficient of incidence between τ and σ, cbdΣ σ consists of
the simplices in the immediate coboundary of σ and bdΣ τ consists of the simplices in the
immediate boundary of τ .
Further, we recall the notion of top simplex. We say that a simplex ρ of Σ is a top simplex
if it is not a proper face of any simplex of Σ. Equivalently, ρ is a top simplex if its
coboundary cbdΣ ρ is empty. Dually, ρ is called a free simplex if it is not a proper coface
of any simplex of Σ or, equivalently, if its boundary bdΣ ρ is empty.

92

Reduction and coreduction pairs can be successfully used also in the context of discrete
Morse theory. Two unconstrained algorithms performing either sequences of coreductions
or of reductions to obtain a gradient vector field have been developed in the literature (see
Subsection 2.4.3.1). Here, we focus on them describing both algorithms in details. The
basic scheme of both algorithms is presented in Algorithm 1.

Algorithm 1 Coreduction-based [reduction-based] algorithm (basic scheme)

1: INPUT: Σ, simplicial complex
2: OUTPUT: V , gradient vector field; A, set of critical simplices
3: Σ′ := Σ
4: V := ∅
5: A := ∅
6: while Σ′ ! = ∅ do
7: while Σ′ admits a coreduction [reduction] pair (σ, τ) do
8: V := V ∪ {(σ, τ)}
9: Σ′ := Σ′ \ {σ, τ}

10: Let ρ be a free [top] simplex of Σ′

11: A := A ∪ {ρ}
12: Σ′ := Σ′ \ {ρ}

The approach in [HMMN14] is based on the construction of a Forman gradient on a sim-
plicial complex Σ by using coreduction pairs and removals of free simplices. According
to Algorithm 1, in order to obtain a Forman gradient V on Σ, the approach in [HMMN14]
initializes first V as null and the set of non-excised simplices Σ′ as Σ. While Σ′ admits
a coreduction pair, the algorithm excises a coreduction pair (σ, τ) from Σ′ and adds it to
V . When no more coreduction is feasible, a free simplex is excised from the complex
and labelled as critical. The algorithm repeats these steps until no coreduction can be
performed and set Σ′ is empty.

The approach in [BL14] is based on the construction of a Forman gradient on a simplicial
complex Σ by using reduction pairs and removals of top simplices. This method is dual
with respect to the coreduction-based algorithm. As described in Algorithm 1, it follows
the same pattern as the previous one, but performing and removing reduction pairs and top
simplices instead of coreduction pairs and free simplices. While the set of non-excised
simplices Σ′ admits a reduction pair, the algorithm excises a reduction pair from Σ′ and
adds it to V . When no more reduction is feasible, a top simplex is excised from the
complex and labelled as critical. Then, the algorithm repeats this process until the set Σ′

of the remaining simplices of Σ is empty.

The two approaches have been developed in very different contexts with different tasks.
The first method belongs to a large project whose purpose is the standard and persistent
homology computation and leading to the implementation of the software Perseus [Nan].
On the other hand, the main goal of the approach proposed in [BL14] is, thanks to a
random algorithm performed a huge number of times, to test the goodness of the triangu-
lation of Σ and to provide a support to the validation of new theoretical results. For both
methods it has been proven that the discrete vector field V produced on Σ is free of closed
path and, so, it is a gradient vector field.

93

In order to minimize the size of the resulting discrete Morse complex, in both approaches
the creation of a critical simplex is performed only if no more coreduction pair or re-
duction pair is feasible. Actually, even if this condition is not satisfied, the acyclicity of
the obtained gradient paths is still guaranteed. In the following, we refer to this two ap-
proaches, also in the case in which critical simplices can be created when it is not strictly
necessary, as coreduction-based algorithm and reduction-based algorithm, respectively.

As described in Subsection 2.3.3.4, an improvement in persistent homology computation
can be achieved through the construction of a particular Forman gradient called filtered
gradient vector field. Let Σ be a simplicial complex and let F = {Σm | 0 ≤ m ≤ M}
be a filtration of Σ. A Forman gradient V of Σ is called filtered gradient vector field if,
for each pair (σ, τ) ∈ V there esists m ∈ {1, . . . ,M} such that σ, τ ∈ Σm and σ, τ /∈
Σm−1. Coreduction-based and reduction based algorithms can be easily adapted to the
computation of a filtered gradient vector field with respect to a filtration F of a simplicial
complex Σ. In this context, both approaches maintain the basic structure described in
Algorithm 1. Unlike the standard case, a reduction or a coreduction pair (σ, τ) can be
elected as a pair for the filtered gradient vector field only if the simplices σ and τ appear
at the same step of filtration F .

3.1.2 Equivalence of reduction and coreduction sequences

In this subsection, we prove the equivalence between the use of reduction and coreduction
operators in the construction of a (filtered) gradient vector field and we introduce a class
of methods which could operate reductions and coreductions in an interleaved way. To
this aim, we need some preliminary results which help us to understand how the removal
of a coreduction or of a reduction pair affects the coboundary and the boundary of the
simplices of a simplicial complex.

Remark 3.1. Let τ be a simplex and let σ be one of its faces. Then, there exist dim τ −
dimσ faces of τ in cbdτ σ.

Lemma 3.2. In a coreduction-based algorithm, each removal operation does not modify
the coboundary of the remaining simplices.

Proof. Let Σ be a simplicial complex on which the coreduction-based algorithm is exe-
cuted. Clearly, the removal of a free simplex does not modify the coboundary of any of
the remaining simplices. Let us consider only removals of coreduction pairs. Let (σ, τ)
be a feasible coreduction pair in the set of non-removed simplices Σ′. The only simplices
whose coboundary can be modified by the coreduction pair are those belonging to bdΣ′ τ
and to bdΣ′ σ. Since for the feasible coreduction pair (σ, τ) bdΣ′ τ = {σ}, we just need to
prove that before performing the coreduction bdΣ′ σ = ∅. Suppose that exists ν ∈ bdΣ′ σ.
By Remark 3.1, there exists in Σ σ′ 6= σ such that σ′ ∈ bdΣ τ and ν ∈ bdΣ σ

′. Since
(σ, τ) is a feasible coreduction pair in Σ′, simplex σ′ must have been already removed,
i.e., σ′ 6∈ Σ′. Let us proceed by induction. If (σ, τ) is the first coreduction pair performed
in the coreduction-based algorithm on Σ, then σ′ has been removed as a free simplex, but,
since ν ∈ bdΣ σ

′ and ν ∈ Σ′, this leads to a contradiction.

94

Assume now that, for any removal of a coreduction pair performed before (σ, τ), the
simplex of lower dimension in the pair was free. Since ν ∈ bdΣ σ

′ and ν ∈ Σ′, σ′ cannot
be removed as a free simplex or by a coreduction pair removal of the kind (ν ′, σ′). So,
σ′ has been removed by operating a coreduction pair removal of the kind (σ′, τ ′), but this
contradicts the inductive hypothesis.

Lemma 3.3. In a reduction-based algorithm, each removal operation does not modify the
boundary of the remaining simplices.

Proof. Let Σ be a simplicial complex on which the reduction-based algorithm is executed.
Clearly, the removal of a top simplex does not modify the boundary of any remaining sim-
plex. Let us consider only removals of reduction pairs. Let (σ, τ) be a feasible reduction
pair in the set of non-removed simplices Σ′. As in Lemma 3.2, it is sufficient to prove
that, before performing the coreduction, cbdΣ′ τ = ∅. If there exists ν ∈ cbdΣ′ τ , then,
by Remark 3.1, there exists dim ν − dimσ ≥ 2 faces of ν in cbdΣ′ σ. But this leads to a
contradiction because (σ, τ) is a reduction pair and, thus, # cbdΣ′ σ = 1.

We are now ready to formalize and to prove the equivalence between the coreduction-
based and reduction-based algorithms.

Proposition 3.4. Given a simplicial complex Σ and the gradient vector field V produced
by a reduction-based algorithm, it is always possible to obtain the same gradient vector
field through a coreduction-based algorithm. The converse is also true.

Proof. For the sake of brevity, we only prove that the Forman gradient produced by a
reduction-based algorithm on Σ can be obtained with a coreduction-based algorithm. The
proof of the converse is similar (by using Lemma 3.2). Let Σ be a simplicial complex and
let

R1
1, R

1
2, . . . , R

1
i1
, R2

1, R
2
2, . . . , R

2
i2
, . . . , Rn

1 , R
n
2 , . . . , R

n
in (3.4.1)

be the ordered sequence of reduction pairs and top simplices removed during the exe-
cution of a reduction-based algorithm, where, for 1 ≤ l ≤ n and 1 ≤ j ≤ il − 1, Rl

j

represents a reduction pair and, for each 1 ≤ l ≤ n, Rl
il

represents a top simplex removal
(for an example, see Figure 3.1).

We want to prove that, by using the same removals, it is possible to obtain a sequence
of coreduction pairs and free simplices compatible with a coreduction-based algorithm
producing the same gradient vector field. In order to do this, we consider the following
sequence obtained by taking sequence (3.4.1) in reverse order:

Rn
in , R

n
in−1, . . . , R

n
1 , R

n−1
in−1

, . . . , R1
i1
, . . . , R1

2, R
1
1 (3.4.2)

Consider (3.4.2) as an ordered list of removal operations performed on Σ (refer to Figure
3.2 for an example). The following properties hold:

1. For each 1 ≤ l ≤ n and 1 ≤ j ≤ il − 1, Rl
j is a feasible coreduction pair.

2. For each 1 ≤ l ≤ n, Rl
il

is a free simplex.

95

Figure 3.1: A sequence of reduction pairs (blue arrows) and top simplex removals (red
simplices) produced by a reduction-based algorithm on a simplicial complex.

Figure 3.2: The sequence of coreduction pairs (blue arrows) and free simplex removals
(red simplices) obtained by taking in the reverse order the reduction-based sequence con-
sidered in Figure 3.1.

To prove the two properties, we denote with:

• Σl
j the simplicial complex obtained in (3.4.1) after performing all the removal op-

erations up to Rl
j included;

• Slj the S-complex obtained in (3.4.2) after performing all the removal operations up
to the one preceding Rl

j .

We have that, for each value of l and j,

Σl
j t Slj = Σ (3.4.3)

1. Let Rl
j = (σ, τ) with 1 ≤ l ≤ n and 1 ≤ j ≤ il− 1. We have to prove that it represents

a coreduction in sequence (3.4.2), i.e., bdSl
j
τ = {σ}. By Lemma 3.3, in (3.4.1), τ cannot

96

be removed before the simplices in bdΣ τ . So, all simplices in bdΣ τ \ {σ} belong to Σl
j .

Then, by (3.4.3), bdSl
j
τ = {σ} and, thus, (σ, τ) is a feasible coreduction in Slj .

2. Let Rl
il

be the simplex σ. We have to prove that it represents a free simplex in sequence
(3.4.2), i.e. bdSl

il

σ = ∅. Similarly to case 1., by Lemma 3.3, in (3.4.1), all simplices

belonging to bdΣ σ are in Σl
il

. Then, by (3.4.3), bdSl
il

σ = ∅ and, thus, σ is a free simplex

in Slil .

Sequence (3.4.2) satisfies properties 1. and 2., so, it represents a sequence of removals
compatible with a coreduction-based algorithm producing on Σ the same Forman gradient
of (3.4.1).

It is interesting to understand if the equivalence between reduction-based and coreduction-
based algorithms still holds with the further condition that allows the introduction of a
critical simplex only if no reduction [coreduction] pair is available. Proposition 3.4 en-
sures that, given a reduction [coreduction] sequence produced on a simplicial complex
Σ by an algorithm imposing a such condition, it is always possible to find a coreduction
[reduction] sequence inducing the Forman gradient on Σ. In spite of this, Proposition
3.4 does not guarantee that a sequence produced by an algorithm satisfying the above
mentioned condition exists. Figure 3.3 shows that, in general, this does not hold.

Figure 3.3: A gradient vector field V on a simplicial complex Σ that cannot be produced
by a coreduction-based algorithm in which critical simplices are introduced only when no
more coreduction pair is feasible.

The Forman gradient V depicted in Figure 3.3 can be considered as produced by a reduc-
tion-based algorithm starting with the removal of top simplex τ and introducing critical
simplices only when it is strictly necessary. The Forman gradient V cannot be produced
by a coreduction-based algorithm in which critical simplices are introduced only when
no more coreduction pair is feasible because such an algorithm applied to Σ necessarily
produces a gradient vector field with just one critical simplex of dimension 0 and two
critical simplices of dimension 1.
For the dual situation, we have not been able to produce a similar counterexample. Pre-
cisely, we are not able to show a simplicial complex on which a gradient vector field pro-
duced by a coreduction-based algorithm in which critical simplices are introduced only
when no more coreduction pair is available cannot be built by a reduction-based algorithm
introducing critical simplices only when it is strictly necessary.

97

3.1.3 Interleaving reductions and coreductions

Another method to build a Forman gradient V on a simplicial complex can be to execute
removals of reduction and coreduction pairs in an interleaved way. We call interleaved-
based algorithm any algorithm producing a discrete vector field by using removals of
reduction and coreduction pairs, of top simplices and of free simplices. Here, we prove
that an algorithm of a such class actually produces a gradient vector field and that all
interleaved methods are equivalent.

Proposition 3.5. Given a simplicial complex Σ, the discrete vector field V produced by
any interleaved-based algorithm is a gradient vector field.

Proof. Given two pairs (σ, τ), (σ′, τ ′) in V , we define (σ, τ) ≤ (σ′, τ ′) if there exists
a V -path starting with (σ, τ) and ending with (σ′, τ ′). In order to prove the thesis, i.e.,
that V is free of closed V -path, it is enough to prove that ≤ define a partial order on V .
Consider set V as built in any intermediate step of the proposed algorithm and let (σ, τ)
be the last pair inserted in V . The following properties allow us to conclude that the order
defined on V is a partial order:

1. (σ, τ) is a minimal element with respect to the elements already inserted in V orig-
inating from a coreduction pair;

2. (σ, τ) is a maximal element with respect to the elements already inserted in V orig-
inating from a reduction pair.

Suppose that condition 1. does not hold. Then, there must exist an already performed
coreduction pair (σ′, τ ′) such that σ ∈ bd τ ′. This implies that, at the step in which (σ′, τ ′)
has been performed, σ, σ′ ∈ bd τ ′. But this is impossible, otherwise the coreduction pair
(σ′, τ ′) could not have been performed.
Suppose that condition 2. does not hold. Then, there must exist an already performed
reduction pair (σ′, τ ′) such that σ′ ∈ bd τ . This implies that, at the step in which (σ′, τ ′)
has been performed, τ, τ ′ ∈ cbdσ′. But this is impossible, otherwise the reduction pair
(σ′, τ ′) could not have been performed.

Since both coreduction- and reduction-based algorithms can be considered as interleaved-
based algorithms, the just proven proposition ensures also that any coreduction- or reduc-
tion-based algorithm returns a gradient vector field.

Having proven that any possible interleaved method leads to a gradient vector field, we
are now interested in understanding if these different approaches could produce equivalent
results. As an immediate consequence of Lemmas 3.2 and 3.3, we can claim the following
result.

Remark 3.6. In each interleaved-based algorithm, each coreduction pair and free sim-
plex removal cannot make a reduction pair feasible. Dually, each reduction pair and top
simplex removal cannot make a coreduction pair feasible.

98

Proposition 3.7. Given a simplicial complex Σ and the gradient vector field V on it pro-
duced by an interleaved-based algorithm, it is always possible to obtain the same gradient
vector field with a reduction-based algorithm or, equivalently, with a coreduction-based
algorithm.

Proof. We prove that the sequence of removals produced by an interleaved-based algo-
rithm on a simplicial complex can be also obtained with a sequence of coreduction pairs
and free simplex removals. By Remark 3.6, we can suitably order such sequence, mov-
ing all the coreduction pairs and the free simplices at the beginning, thus creating a new
sequence equivalent to the previous one. We apply to the last part, composed only of
reduction pairs and top simplices, of this new sequence the same sorting strategy pro-
posed in Proposition 3.4 to transform a reduction-based sequence to a coreduction-based
sequence, and in this way we obtain the claim.

From both an application and a theoretical point of view, it is interesting to define an al-
gorithm to build a gradient vector field which minimizes the number of critical simplices.
It is known that, in general, this problem is NP-hard [JP06]. Our results show that, from
a theoretical point of view, the use of different simplification operators (such as reduction
and coreduction pairs), or the combination of more than one, does not actually affect the
number of resulting critical simplices.

Analogously to the coreduction- and reduction-based approaches, any algorithm inter-
leaving both these operators can be easily adapted to the construction of a filtered gradient
vector field.
Let Σ be a simplicial complex, F a filtration of Σ and V a gradient vector field on Σ. For
each pair (σ, τ) ∈ V , the condition required to guarantee that V is a filtered gradient vec-
tor field of F is satisfied independently from the fact that (σ, τ) has been created thanks
to a reduction or a coreduction pair. This ensures that the validity of the results proven in
this section is not affected by considering coreduction- reduction- and interleaved-based
algorithms adapted to the construction of a filtered gradient vector field instead of the ones
simply retrieving a gradient vector field. So, the proven equivalence between the various
strategies to build a Forman gradient still holds in the filtered case.

3.2 Encoding of a simplicial complex endowed with a gra-
dient vector field

To efficiently encode a simplicial complex endowed with a Forman gradient, we need
effective data structures to represent the underlying simplicial complex and the gradient
vector field defined on it.

As mentioned in Section 2.1, various topological data structures have been developed for
encoding a simplicial complex Σ. The Incidence Graph (IG) [Ede87], a graph repre-
sentation of the Hasse diagram of Σ, encodes all the simplices of Σ and their immediate
boundary and coboundary relations. This data structure allows to easily retrieve inci-
dence relations between the encoded entities but has a huge storage cost for large-size

99

complexes.
The Generalized Indexed data structure with Adjacencies (IA∗) [CDW11] overcomes this
limitation by not explicitly representing all the simplices of a simplicial complex Σ but
just encoding the vertices and the top simplices of Σ and a subset of its adjacent and
boundary relations.
Similarly to the IA∗ data structure, the Stellar Tree [Fel15] is based on an explicit en-
coding of the top simplices of Σ, but, unlike the IA∗ data structure, it is built through a
block decomposition of Σ. Another data structure taken in account is the Simplex Tree
[BM12, BDM13]. The Simplex Tree encodes all the simplices of the represented simpli-
cial complex plus a set of the incidence relations between simplices corresponding to a
specific spanning tree of the Hasse diagram. Differently to the previous ones, the Simplex
Tree cannot considered as a complete data structure since it does not allow to efficiently
perform all the queries to navigate a complex but just a single incidence relation.
Comparisons between the above mentioned data structures have been presented in Sec-
tion 2.1. They have revealed that, for a simplicial complex Σ, data structures based on a
encoding of top simplices of Σ, such as the IA∗ data structure and the Stellar Tree, are
generally much more compact with respect to data structures which explicitly store all the
simplices of Σ.
These considerations have led us to represent the underlying simplicial complex of a sim-
plicial complex endowed with a Forman gradient by using the IA∗ data structure.

3.2.1 Compact encoding of a gradient vector field

A fundamental issue, when working with a gradient vector field is encoding it efficiently.
As discussed in Subsection 1.3.3, a gradient vector field V on a cell complex Γ is a col-
lection of pairs of cells of Γ such that each cell is involved in at most one pair of V .
So, whenever the incidence relations between the cells of a cell complex are naturally or
explicitly encoded, the gradient vector field can be easily represented. For instance, for
a regular grid H , boundary and adjacency relations can be easily managed through an
indexing schema, and so, a Forman gradient V can be compactly encoded as a bitvector
[GRWH12]. Since a simplicial complex has not such a fixed connectivity, the efficient
encoding of a gradient vector field defined on such a complex becomes an interesting
issue. Let Σ be a simplicial complex, a representation for a gradient vector field V en-
codes the pairing relation between two simplices, for all the simplices in Σ. Different
representations have been defined based on the data structure used for representing Σ.

Given the Incidence Graph G = (N,A) of a simplicial complex Σ, the arcs of G encode
all the possible pairings that can be defined on Σ by considering two simplices of consec-
utive dimension. Since a gradient vector field V is a subset of the pairings in A, it can be
encoded on the IG by adding 1 bit flag for each arc in G indicating whether such pairing
is also a valid pair in V .

The crucial difference between an IG data structure and the IA∗ is that the latter only
encodes a subset of simplices of Σ. All those simplices that are not vertices nor top
simplices can be represented only as tuple of vertices or indicating their position among
the faces of a given top simplex. This forces us to compactly represent the configurations
of the gradient inside each top simplex.

100

Generalizing to arbitrary dimensions the gradient encoding proposed in [FlDFW14,
WIFD13] and discussed in Subsection 2.4.3.1, we obtain a representation encoding, for
each top k-simplex σ, a bitvector of length

∑k
i=1

(
k+1
i+1

)
(i+ 1) representing all the possible

pairings on its boundary.

Given the bitvector of a k-simplex σ, its first k+ 1 bits encode the pairing between σ and
one of its (k− 1)-faces. Then, for each of such faces, k bits are stored and so on until, for
each 1-face, 2 bits are encoded storing the pairings with one of its vertices. For example,
considering a 2-simplex (triangle), 3 bits are reserved for encoding the pairings with the
boundary edges. Then, for each of them, 2 bits are reserved for encoding the pairings
with the boundary vertices (see Figure 3.4).

Figure 3.4: Example of the pairs encoded for a triangle.

If two paired simplices ν and τ are both on the boundary of σ, the resulting pair will be
encoded in the bitvector of σ. Let j and l (with j + 1 = l) be the dimensions of ν and τ ,
respectively, we check the bit associated with the corresponding pair computing:

• the position of the bits reserved for l-simplices in σ
∑k

i=l+1

(
k+1
i+1

)
(i+ 1)

• the position of ν on the boundary of τ obtained by enumerating the faces of τ
(denote posν),

• the position of τ on the boundary of σ obtained by enumerating the faces of σ
(denoted posτ).

For example in Figure 3.4, considering the pair (v0, v0v2),

• the position of the bits reserved for 1-simplices is 3

• the position of v0v2 on the boundary of the triangle is 1,

• the position of vertex v0 on the boundary of v0v2 is 1.

Then, the bit representing their pairing relation is at position 3 + (2 · 1) + 1.

3.3 A coreduction-based algorithm for computing discrete
Morse complexes

In this section, we describe an algorithm for computing a discrete Morse complex on
a simplicial complex based on a data structure encoding only the top simplices and the

101

vertices, such as the IA∗ data structure.
The algorithm consists of two different phases: the computation of a (filtered) gradient
vector field through a coreduction-based algorithm and the extraction of the boundary
maps of the discrete Morse complex.

3.3.1 Construction of a (filtered) gradient vector field

In this subsection, we focus on two different algorithms to endow a simplicial complex
Σ with a gradient vector field. The theoretical equivalences proven in Section 3.1 reveal
that there is not a preferable homology-preserving operator with which build a Forman
gradient. This consideration has lead us to develop an algorithm based only on coreduc-
tions since this operator is the most suitable to the IA∗ data structure which is the data
structure chosen for encoding simplicial complexes. The first one allows to retrieve it
through a dimension by dimension pairing. The second one is based on a decomposition
of Σ and returns a gradient vector field compatible with a filtration induced by a scalar
function defined on the vertices of Σ.

Algorithm 2 Coreduction-based algorithm

1: INPUT: Σ, d-dimensional simplicial complex
2: OUTPUT: V , gradient vector field; A, set of critical simplices
3: V := ∅
4: A := ∅
5: k := 0 // working dimension
6: simpl := Σ0 // consider the set of 0-simplices
7: while k <= d do
8: cr := simpl // save unpaired k-simplices
9: k := k + 1 // increase working dimension

10: simpl := Σk // consider the set of k-simplices
11: while cr ! = ∅ do
12: (σ, τ) := getNextCoreduction(simpl, cr,Σ)
13: if (σ, τ) ! = ∅ then
14: pair(σ, τ, V)
15: remove(τ, simpl) // remove from pairable
16: remove(σ, cr) // remove from pairable
17: else
18: σ = getF irst(cr)
19: setCritical(σ,A) // new critical simplex
20: remove(σ, cr) // remove from pairable

The first algorithm, described by Algorithm 2, represents a realistic specialization of the
coreduction-based algorithm sketched in Algorithm 1. Starting from the simplices of
lower dimension, all possible coreductions are applied to build a gradient vector field
V incrementally. Starting from k = 0, the algorithm considers the set of unpaired k-
simplices (row 8) and the set of the (k + 1)-simplices (row 10), respectively denoted as

102

cr and simpl. While cr is not empty (row 11), if a coreduction pair (σ, τ) between a k-
and a (k + 1)-simplex is feasible (row 13), (σ, τ) is added to the gradient vector field V .
Otherwise (row 17), a free k-simplex is elected to be critical and the search of coreduc-
tion pairs continues. When all the k-simplices have been paired or declared as critical, the
working dimension is increased by one. Obviously, since no coreduction pair is feasible
on a simplicial complex, at the first step, a vertex v is declared as critical in V .

Algorithm 2 is based on the following functions and procedures. Procedure pair(σ, τ, V)
updates the gradient vector field V by adding to it the coreduction pair (σ, τ). By consid-
ering the IA∗ data structure, pair(σ, τ, V) takes linear time in the number of top simplices
incident in σ (the smaller simplex), since, accordingly to the gradient encoding defined in
Subsection 3.2.1, we have to update the pairing between σ and τ in all the top simplices
incident in them.
Function getNextCoreduction(simpl, cr,Σ) iterates on the set of unpaired simplices
and takes the first simplex available for a coreduction within its candidate pair. This has
linear worst case complexity. Considering the while cycle it brings to a worst case com-
plexity of O(n2

k), where nk represents the number of the k-simplices of Σ. However, the
whole cycle has a linear complexity in practice.
Function getF irst takes the first element of the set on which it is applied and it has O(1)
complexity.
Procedure remove has a complexity depending on the container used for the simplices.
By using std::sets, the complexity is O(log nk).
Another step to be taken in account is the retrieval of the set of k-simplices of Σ. By
using an IG this step requires constant time while, by choosing the IA∗ data structure
and assuming any top simplex of dimension d, the computation of Σk has O(nd

(
d+1
k+1

)
)

complexity.

In the specific case of persistent homology computation, an additional condition must
assure that each simplex is paired only with another simplex belonging to the same filtra-
tion level. Two examples of coreduction-based algorithms implementing this idea can be
found in [RWS11] for 2D and 3D regular grids and in [MN13] for simplicial complexes.
Even if defined for regular grids, the algorithm in [RWS11] is a valuable approach that
can be successfully extended to higher dimensions. We have implemented a dimension-
independent version of the latter for simplicial complexes endowed with a scalar function
defined on their vertices.

Let us consider a simplicial complex Σ and a function f : Σ0 → R associating a scalar
value with each vertex of Σ. Under these conditions, Σ can be endowed with a filtration
F naturally extending the function f . For each simplex σ in Σ, the filtration value of σ is
defined equal to the maximum of the values taken by f on the vertices of σ. According
to the definition given in Subsection 2.4.3.1, the lower star of v, denoted star− v, is the
set of simplices incident in v for which all its vertices have a filtration value lower than or
equal to f(v). Formally,

star− v = {σ ∈ Σ | ∀w ⊆ σ ∧ w ∈ Σ0, f(w) ≤ f(v)}

Figure 3.5 (a) depicts by using different colors the lower star of each vertex with re-

103

spect to the function values which label the vertices of the simplicial complex. Under the
above notations and supposing that the function f assumes different values on different
vertices1, the lower stars of the vertices of Σ form a partition of the simplices of Σ (see
Figure 3.5 (a)). This enables us to subdivide the problem of computing coreduction pairs
in disjointed sets.

A simplex σ belongs to the lower star of a single vertex and it can be paired with simplices
belonging to the same lower star. Thus we can easily subdivided the computation of the
gradient vector field working on the lower star of each vertex.
Algorithm 3 illustrates the procedure for computing a gradient vector field V on Σ filtered
with respect to F . The algorithm works, for each dimension, with two sets of simplices:

Algorithm 3 Coreduction-based algorithm (filtered case)

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: f , filtration on vertices of Σ
3: OUTPUT: V , gradient vector field; A, set of critical simplices
4: Σ0 := vertices of Σ
5: V := ∅
6: A := ∅
7: for v ∈ Σ0 do
8: k := 0 // working dimension
9: stv := {v}

10: while k <= d do
11: crv := stv // save unpaired k-simplices
12: k := k + 1 // increase working dimension
13: stv := LowerStar(v,Σ, f, k) // compute k-simplices of lower star
14: while crv ! = ∅ do
15: (σ, τ) := getNextCoreduction(stv, crv,Σ)
16: if (σ, τ) ! = ∅ then
17: pair(σ, τ, V)
18: remove(τ, stv) // remove from pairable
19: remove(σ, crv) // remove from pairable
20: else
21: σ = getF irst(crv)
22: setCritical(σ,A) // new critical simplex
23: remove(σ, crv) // remove from pairable

the set of k-simplices that can be paired with bigger (k+1)-simplices or declared as criti-
cal (row 11) and the set of (k+ 1)-simplices (row 13), called crv and stv in the algorithm,
respectively.
Candidate simplex for coreduction is extracted from the set stv (row 15) and paired with
its unique unpaired face (row 17). Recall that a simplex τ can be paired with another
simplex σ by coreduction if σ is the only unpaired simplex on the boundary of τ . If there

1The injectivity hypothesis for function f can be easily ensured by a slight perturbation of the values
taken by f .

104

are no coreductions available (row 20) a new critical simplex is taken from crv. Every
time a simplex is paired or set as critical it is also removed from stv or crv. When the set
crv is empty, the working dimension increase. The algorithm stops when all the simplices
in the lower star of v have been paired or set as critical.

(a) (b)

Figure 3.5: (a) A simplicial complex Σ decomposed in the lower stars of its vertices (dif-
ferent lower stars are depicted by using different colors) where, the labels of the vertices
represent the scalar values taken by the function f . (b) The filtered Forman gradient V
obtained by applying Algorithm 3 on the simplicial complex Σ depicted in (a). The red
simplices denote the simplices declared as critical while, the blue arrows represent the
pairs of V .

Let us consider the simplicial complex Σ and the scalar function f defined on its vertices
represented in Figure 3.5 (a). Applied to this example, Algorithm 3 works independently
on the lower star of each vertex of Σ returning the filtered gradient vector field V depicted
in Figure 3.5 (b). Since the lower stars of the vertices labeled by 1 and 2 consist of only
one vertex, these vertices are declared as critical. Then, the lower star of the vertex labeled
by 3 is considered. It consists of the vertex 3 and of the 1-simplices 13 and 23. Vertex
3 is paired with the edge 13. The working dimension is increased by 1. Since the lower
star does not contain any 2-simplex, no more coreduction pair is feasible and so, the edge
23 is declared as critical. Finally, the lower star of vertex 4 is computed. It consists of
the vertex 4, of the 1-simplices 14, 24, 34 and of the 2-simplex 134. First, the vertex 4 is
paired with the edge 14. Then, the working dimension is increased by 1 and the algorithm
start to look for coreduction pairs composed by 1- and 2-simplices. So, the coreduction
pair (34, 134) is add to the gradient V and the unpaired 1-simplex 24 is declared as critical.

For computing the lower star of a vertex, specifically considering the IA∗ data struc-
ture, we extract the top simplices incident in it and then, navigating their boundary, we
collect all those simplices that are in the lower star. Let tv be the number of top sim-
plices incident in v and sv the number of k-simplices in the lower star of v the procedure
LowerStar(v,Σ, f, k) takes O(tv · sv) in the worst case since some simplices are con-
tained in the boundary of more than one top simplex (and those visited more than once).
Analogously to Algorithm 2,

• procedure pair(σ, τ, V) takes linear time in the number of top simplices incident in
σ;

105

• function getNextCoreduction(stv, crv,Σ) iterates on the set of unpaired simplices
and so, it has linear worst case complexity; it brings to a worst case complexity of
O(s2

v) if we consider the while cycle (linear complexity in practice);

• function getF irst has O(1) complexity;

• procedure remove has O(log sv) complexity by choosing std::sets.

It is immediate to verify that Algorithm 2 is a coreduction-based algorithm. Even if it is
less obvious, also Algorithm 3 is a coreduction-based algorithm. Furthermore, it allows
to retrieve a filtered gradient vector field.

Proposition 3.8. Let Σ be a simplicial complex, f : Σ0 → R be an injective function
and F be the filtration of Σ naturally induced by f . Given Σ and f as input, Algorithm 3
returns a filtered gradient vector field with respect to F .

Proof. Algorithm 3 processes the lower stars independently. So, without loss of gener-
ality, we can assume that lower stars are processed in a sequence ordered by ascending
function values. In this way, we obtain an ordered sequence of simplices added to V and
to A. We prove that this sequence, denoted as S, actually represents a feasible sequence
of coreduction pairs and free simplices for Σ.
Let us consider a pair of simplices (σ, τ) elected as a pair of V during the processing of
star− v. Let σ′ be a simplex in bdΣ τ different from σ. If σ′ ∈ star− v, then σ′ has to be
already added to V or to A. Otherwise, if σ′ 6∈ star− v, then there exists a vertex w of
Σ such that σ′ ∈ star−w and f(w) < f(v). So, σ′ has to be already added to V or to
A during the processing of star−w. In both cases, (σ, τ) can be considered as a feasible
coreduction pair in the sequence S. Analogously, any simplex σ added to A during the
processing of a lower star can be considered as a free simplex in the sequence S. So, Al-
gorithm 3 is a coreduction-based algorithm and then, thanks to Proposition 4.14, it returns
a gradient vector field.
Further, since Algorithm 3 pairs only simplices belonging to the same lower star and by
the definition of F these simplices have the same filtration value, the returned gradient
vector field V is necessarily filtered with respect to F .

Algorithm 3 results to be especially optimized when working with Vietoris-Rips (VR)
complexes (see Subsection 1.1.1). VR complexes represent a class of simplicial com-
plexes particularly relevant in various applications and, since they are computed from
clouds of points, they are quite often filtered according to a scalar function defined on
their vertices. Algorithm 3 can be suitable adapted for an arbitrary simplicial complex Σ
endowed with a different filtration. In this case, a filtered Forman gradient is retrieved by
processing the lower stars of all the simplices of Σ instead of considering only the lower
stars of the vertices of Σ.

As already mentioned, the construction of a gradient vector field V on a simplicial com-
plex Σ can be exploited to speed up the computation of the homology of Σ. Algorithm 2
is a simple way to build a gradient vector field V . In spite of this, its time complexity is
strongly affected by the function getNextCoreduction(simpl, cr,Σ) which iterates on

106

the set of simplices of Σ of a certain dimension.
In order to overcome this limitation, a Forman gradient for Σ can be obtained by applying
Algorithm 3 on Σ. Since, in this case, we do not have an available scalar function f ,
we can arbitrarily declare any ordering of the vertices of Σ as the function f . By using
Algorithm 3, the number of retrieved critical simplices is usually greater than the one
expected by performing Algorithm 2. For instance, the Forman gradient represented in
Figure 3.5 (b) and obtained by performing Algorithm 3 on the depicted simplicial com-
plex has superfluous critical simplices. In spite of this, experimental evaluations have
led us to choose Algorithm 3 instead of Algorithm 2 not only for computing persistent
homology but also for retrieving standard simplicial homology. This is mainly due to the
fact that, in Algorithm 3, the function getNextCoreduction iterates on a subset of the
simplices belonging to a lower star instead of iterating on the set of the simplices of Σ of
a certain dimension.

3.3.2 Extraction of the boundary maps

As discussed in Subsection 2.4.3.2, a discrete Morse complex can be extracted from the
corresponding gradient vector field by navigating its paths. Specifically, the boundary
maps ∂̃k : Mk → Mk−1 of the discrete Morse complexM∗ associated with a (filtered)
gradient vector field built on Σ, are obtained counting the multiplicity of each gradient
path between two critical simplices.

Algorithm 4 Descending visit

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: V , gradient vector field; A, set of critical simplices
3: OUTPUT: M , set of simplices marked as visited
4: for σ ∈ A do
5: queue Q := ∅
6: Q.push(σ) // enqueue σ
7: setMarked(σ,M) // mark σ as visited
8: while Q.notEmpty() do
9: τ := Q.pop()

10: for σ1 ∈ getImmediateBoundary(τ,Σ) do
11: if isPaired(σ1) then
12: τ1 := getPair(σ1)
13: if !isMarked(τ1) then
14: // each simplex is visited only once
15: Q.push(τ1)
16: setMarked(τ1,M)

Algorithm 4 illustrates the descending traversal of a gradient vector field. Starting from
a critical k-simplex σ, all the (k − 1)-simplices in the boundary of σ are selected (row
11) and, among them, only the (k − 1)-simplices paired with a k-simplex not visited are
considered (row 14). From such k-simplices a breadth-first traversal continues until all
the V -paths starting from σ have been visited.

107

Procedure setMarked(σ,M) annotates a simplex σ adding it to the set M . To do this,
we use a bitvector similar to the one described in Section 3.2.1. The time complexity for
annotating a simplex is then constant.
Function getImmediateBoundary(τ,Σ) returns the immediate boundary bdΣ τ of τ in
the simplicial complex Σ. Extracting the immediate boundary of a simplex σ has a neg-
ligible time complexity since it is linear in the number of simplices in the boundary of σ.
Since each simplex is visited at most once, the time complexity of the whole process is
linear.

Using only the simplices marked as visited by Algorithm 4, and navigating the V -paths
between two critical simplices in reverse (ascending) order, the boundary maps can be
efficiently computed accordingly to Definition 1.46. As an example, we show in Figure
3.6 the two steps performed for computing the V -path between the critical simplices τ
and σ. Starting from τ , the descending traversal is performed marking as visited all
the triangles reached by a V -path starting at τ . Then, the (trivial) ascending traversal
is performed starting at σ and navigating only the triangles previously visited until τ is
reached.

As shown in the example of Figure 3.6, the simplices visited during the ascending traver-
sal are a subset of the ones visited during the descending traversal. Thus the time com-
plexity is still linear.

Figure 3.6: Descending and ascending traversals used during the computation of the V -
path connecting τ and σ.

3.4 Experimental results

We have implemented Algorithm 3 and Algorithm 4 by choosing to represent simplicial
complexes through the IA∗ data structure. Given a simplicial complex Σ, the obtained
tool allows us to achieve two different tasks:

• compute a discrete Morse complex associated with Σ,

• retrieve homology and persistent homology of Σ.

The discrete Morse complex has been used in many applications with different goals.
Generally speaking, computing the discrete Morse complex guarantees a way for reduc-
ing the size of the original complex. In this work, we have considered two problems

108

concerning the computation of a discrete Morse complex in arbitrary dimensions. The
first one is the storage cost required by the underlying simplicial complex, that increases
exponentially with the growing of the dimension; the second one is the storage cost of the
Forman gradient and the memory consumption required for computing it.

We evaluate the performances of our coreduction-based algorithm for both these points of
view, considering real and synthetic datasets originated by different thematic areas. The
hardware configuration used is an Intel i7 3930K CPU at 3.2Ghz with 64GB of RAM.

When working in higher dimensions, the gradient vector field V has been used as a
homology-equivalent model of the original complex Σ rather than a combinatorial rep-
resentation of the function gradient. Specifically, homology and persistent homology are
computed on V exploiting its compactness with respect to Σ.

We have used three kinds of dataset in our experiments. The first ones are volumetric
datasets that have been tetrahedralized. Each vertex of the dataset has a scalar value asso-
ciated with. The DTI-scan is a Diffusion Tensor MRI Scan of a human brain, the VisMale
dataset is a CT-scan of a man’s head and the Ackley dataset is a synthetic function dis-
cretizing the Ackley’s function [Ack87]. The second ones are networks obtained from real
data on which the cliques are computed. Two of these datasets (AMAZON1, AMAZON2)
are graphs representing the "Customers Who Bought This Item Also Bought" feature of
the Amazon website. If a product i is frequently co-purchased with product j, the graph
contains a directed edge from i to j (notice, we are considering the graph undirected). The
third graph represent a road network of California where intersections and endpoints are
represented by nodes and the roads connecting these intersections or road endpoints are
represented by undirected edges (ROADNET). For simplicity we use the enumeration of
the input vertices as field value. The third ones are point clouds extracted from a 2-sphere
on which a VR complex is computed (datasets SPHERE-1.0, SPHERE-1.2, SPHERE-1.3).

3.4.1 Computing the discrete Morse complex

We have compared the performances of our implementation in computing the discrete
Morse complex with the ones obtained by using the software tool Perseus [Nan]. Perseus
is a software tool able to build a discrete Morse complex and to retrieve homology and
persistent homology group for a large class of cell complexes containing simplicial com-
plexes. In Perseus, the construction of a Forman gradient is based on a coreduction-based
algorithm (quite similar to the one depicted in Algorithm 3) and simplicial complexes are
encoded through the Incidence Graph (IG).

Table 3.1 summarizes the results obtained. Column Cp indicates the number of critical
simplices in the computed Forman gradient, as well as the compression factor with respect
to the simplicial complex in input. The compression factor generally depends on the
homological changes in the filtration of a dataset and, as we can notice, it varies depending
on the type of the dataset. Volumetric datasets benefit from a compression of about two
orders of magnitude, network datasets are compressed only by a factor of ten, while higher
dimensional complexes are compressed by five to eight orders of magnitude.

109

Dataset d |Σ| Cp
Space (GB) Time

Σ V IA∗ IA∗p IG IA∗ IA∗p IG
static run. run.

DTI-SCAN 3 24M 0.14M (171x) 0.97 0.47 1.5 1.69 19.9 3.1m 0.7m 77.3h
VISMALE 3 118M 0.94M (125x) 4.72 1.02 6.3 6.49 - 29.2m 6.5m -
ACKLEY4 4 204M 0.01M (104x) 6.8 1.1 8.0 8.7 - 1.1h 19.7m -
AMAZON01 6 2.2M 0.16M (13.7x) 0.12 0.11 0.28 0.5 1.8 14.5s 3.7s 20.94h
AMAZON02 7 18.4M 0.37M (49.7x) 0.28 0.25 0.68 1.3 9.8 281.9s 68.3s >200h
ROADNET 3 4.8M 0.75M (6.4x) 0.8 0.6 1.6 2.5 3.3 15.8s 6.06s >200h
SPHERE-1.0 16 0.6M 16 (105x) 0.0009 0.002 0.018 0.031 1.0 56.8s 22.1s 61.7s
SPHERE-1.2 21 26M 12 (107x) 0.0032 0.067 0.29 1.2 - 4.2h 1.8h -
SPHERE-1.3 23 197M 7 (108x) 0.0034 0.09 1.8 7.0 - 173h 74.3h -

Table 3.1: Memory consumption and timings obtained computing the discrete Morse
complex with our library (IA∗, IA∗p) and with Perseus (IG). The Space column indicates
the memory consumption obtained running the three programs; Σ and V indicate the
memory required by storing the simplicial complex and the Forman gradient, respectively.
Column run. indicates the total memory consumption at runtime. The Time columns
indicate the time needed to compute the discrete Morse complex; timings are reported in
seconds (s), minutes (m) and hours (h). Some runs went out of memory (indicated with
-) and some other have been stopped when the computation time was above 200 hours
(indicated with >200h).

Regarding the memory consumption (column Space), we can notice that differences be-
tween the IA∗ and the IG are still evident while considering the memory used at run-time.
Looking at the IG implemented in the Perseus library the memory consumption at run-
time is always comparable to the one used for storing the data structure statically. This is
due to the fact that all the simplices are already represented at the beginning of computa-
tion and, thus, the maximum peak is reached before starting the reduction algorithm.

This is no longer true using the IA∗. For studying the performances of the representation,
we are reporting the memory consumption of the static simplicial complex (column Σ),
of the gradient vector field (column V) and of the total memory consumption used at
runtime (column IA∗) fractioned. Summing up the storage cost of Σ and V we obtain the
storage cost of the data structures from a static point of view (i.e. how much RAM is used
for storing those information). Nevertheless, computing the Forman gradient requires an
additional cost. Using the IA∗ we are encoding only a fraction of the total number of
simplices, the remaining have to be explicitly represented at runtime when extracting the
lower star on each vertex (see Algorithm 3, lines 15-16) and encoded in the sets crv and
stv.

The total memory consumption is represented in Table 3.1 (column IA∗ run.). We can
notice that, while working on low dimensional complexes (like DTI-SCAN or ROADNET)
the difference between the static storage cost (Σ + V) and the memory consumption at
runtime (column IA∗ run.) is low. Indeed in these cases, the lower star for each vertex
is small. Working on higher dimensional complexes instead, the number of simplices in
the lower star grows exponentially. In the worst case (Sphere-1.3), we end up occupying
1.8GB at runtime while for storing the simplicial complex and the Forman gradient were
required less than 100MB.

110

Considering the timings, we can see that our approach is generally faster, in particular
when the size of the complex is big. With the growing of the dimensions, we see that the
complexity of the Forman gradient computation reaches its limits taking also 173 hours to
finish in the worst case (dataset SPHERE-1.3). However, the peculiarity of the algorithm
should be the easy parallelization of computation. In particular, the pairings between
simplices belonging to different lower stars can be performed independently from each
other. To investigate this aspect, we have implemented a parallel version of our algorithm
based on the OpenMP library. The results obtained are reported in Table 3.1 (column
IA∗p). Running the same experiments as before but using eight threads we are basically
able to process 8 vertices at the same time and this speeds up the computation 2 to 5 times.
Since all the processes are executed on the same machine the maximum peak of memory
experienced is higher with respect to the single thread version, up to 6 times bigger when
working in high dimensions. (see Table 3.1 column Space IA∗p).

3.4.2 Computing persistent homology

In this subsection, we compare the actual performances of three different libraries in the
specific case of persistent homology computation. The libraries involved in our experi-
mental evaluation have been our implementation based on the IA∗ data structure, Perseus
based on the IG and the Gudhi library [MBGY14].
The Gudhi library is de-facto the state-of-the-art library for what concern performances
and compactness when working on simplicial complexes in high dimensions. Specifically,
it has been used for computing persistent homology by exploiting an approach based on
annotations and the Simplex Tree (ST) data structure [BDM13].

Dataset d |Σ| Space (GB) Time
IA∗ IA∗p IG ST IA∗ IA∗p IG ST

AMAZON01 6 2.2M 0.28 0.5 1.8 0.4 14.5s 3.7s 20.94h 2.6s
AMAZON02 7 18.4M 0.68 1.3 9.8 2.2 281.9s 68.3s >200h 44.05s
ROADNET 3 4.8M 1.6 2.5 3.3 1.3 15.8s 6.06s >200h 3.3s
SPHERE-1.0 16 0.6M 0.018 0.031 1.0 0.06 56.8s 22.1s 61.7s 1.05s
SPHERE-1.2 21 26M 0.29 1.2 - 2.1 4.2h 1.8h - 1.32m
SPHERE-1.3 23 197M 1.8 7.0 - 16.04 173h 74.3h - 19.2m

Table 3.2: Memory consumption and timings obtained computing the Forman gradient
with our library (IA∗, IA∗p) and with Perseus (IG) and computing the persistent homology
with Gudhi library (ST). The Space column indicates the memory consumption obtained
running the four programs. Column run. indicates the total memory consumption at run-
time. The Time columns indicate the time needed to compute the discrete Morse complex;
timings are reported in seconds (s), minutes (m) and hours (h). Some runs went out of
memory (indicated with -) and some other have been stopped when the computation time
was above 200 hours (indicated with >200h).

Table 3.2 summarizes the obtained results. Concerning the memory consumption (col-
umn Space), we can notice that differences between the IA∗ and the ST significantly
decrease while considering the memory used at run-time. This is mainly due to the differ-
ent approaches that are implemented in our library (based on the encoding of the Forman

111

gradient) and in the Gudhi library (based on the annotation matrices whose compactness
has been discussed in [BDM13]). Considering the IG implemented in the Perseus library,
the memory consumption at run-time is always comparable to the one used for storing the
data structure statically. Considering the timings and comparing our library to Perseus,
we can see that our approach is generally faster in particular when the size of the complex
is big. With the growing of the dimensions, we see the computational complexity of the
Forman gradient computation reaches its limits taking also 173 hours to finish in the worst
case (dataset SPHERE-1.3).

Compared to the Gudhi library, our implementation is always much slower. This was
an expected result caused by the compactness of our data structure, that requires time
for extracting data not explicitly encoded, and by the goodness of the approach based
on annotation matrices already documented in literature. However, the peculiarity of
a Forman based implementation should be the easy parallelization of computation. To
investigate this aspect, we have implemented a parallel version of our algorithm based
on the OpenMP library. The results obtained are reported in Table 3.2 (column IA∗p).
Running the same experiments as before but using eight threads, we are basically able
to process 8 vertices at the same time. This speeds up the computation 2 to 5 times.
Since all the processes are executed on the same machine, the maximum peak of memory
experienced is higher with respect to the single thread version, up to 6 times bigger when
working in high dimensions (dataset SPHERE-1.3).

Even though the Gudhi library is the best implementation currently available in the liter-
ature, the fact that for high dimensional complexes it represents all the simplices of the
simplicial complex explicitly could lead to serious limitations when computing persistent
homology with real datasets. Conversely, the Forman gradient computed with our ap-
proach can be used for computing a complex that shares the same persistent homology
of the simplicial complex, still being much smaller. The compact encoding and the al-
gorithm, working independently on the lower star of each vertex, will be at the center of
investigations for the development of a distributed approach.

3.5 Concluding remarks

We have analyzed and proposed different strategies to endow a simplicial complex with a
gradient vector field through the use of homology-preserving operator and to extract the
corresponding discrete Morse complex. We have formally proven the theoretical equiva-
lence of such methods which allow reducing the complexity of the computation through
reductions and coreductions. We have developed and implemented an algorithm to effi-
ciently build a discrete Morse complex based on coreductions, on a space-efficient repre-
sentation of the simplicial complex and on a compact encoding of the Forman gradient.
Finally, we have showed the application of the proposed algorithm to the persistent ho-
mology computation providing experimental results and comparisons.

We take into account here three different developments of the work presented in this
chapter:

112

• development of a distributed implementation of the coreduction-based algorithm,

• application of our algorithm to the extraction and the visualization of extremum
graphs,

• design and development of an algorithm for computing multi-dimensional persis-
tent homology.

A first future development could be to design and implement an efficient encoding for a
simplicial complex in arbitrary dimensions based on the Stellar Tree [Fel15], a compact
topological data structure based on a spatial index, which stores only the vertices and
the top simplices of the complex. This latter would not only reduce the storage cost
further, but also allow an efficient localized computation of the homology, overcoming
the limitation in this of the IA∗ data structure.
Since the results obtained from the parallel implementation, we will consider a distributed
implementation. Subdividing the computation on different machines we should be able
to get a boost on timings without affecting memory consumptions.

The representation of a Forman gradient will be at the base of many application domains.
When working with scientific simulations and in particular with high dimensional func-
tions, the topological spines have been proposed as a visual representation of the ex-
tremum graphs [CLB11]. The extremum graph is a simplified substructure of the Morse-
Smale complex encoding information only about the critical points of index 0, 1, d − 1
and d where d is the dimension of the underlying complex. The topological spines can be
thought as an extremum graph presenting informative visual descriptions of the function
behavior along the paths connecting maxima and minima with saddles.
For representing this structure, computing the 1-skeleton of the Morse-Smale complex
as well as computing the volume of the area surrounding maxima and minima is a nec-
essary step. These structures are implicitly represented by the Forman gradient that can
be exploited for navigating the simplices spanning those regions at wish (following the
algorithm in Section 3.3.2), providing the perfect framework for interactively studying
subsets of the domain then retrieving (and storing) such information under request.
In the near future, we plan to suitably adapt our work to quickly extract the extremum
graph of a scalar field defined on a simplicial complex and to visually represent it through
a topological spine [CLB11].

As already mentioned in Subsection 1.2.2, multi-dimensional persistent homology [CZ09,
CSZ09] represents a generalization of classical persistent homology capturing the topol-
ogy of a family of shapes parameterized along multiple scalar functions. As recently ad-
dressed in [AKL16, AKLM15], multi-dimensional persistent homology can be obtained
by exploiting discrete Morse theory. We plan to apply our method for efficiently building
discrete Morse complexes in order to improve the computation of multi-dimensional per-
sistent homology.
In the framework of multi-dimensional persistence, the lower stars of the vertices does
not form a partition of the original complex Σ. We should adapt our algorithm to find
weaker properties that still provide a total ordering on the entire complex. This is a rele-
vant aspect since it means that boundary relations of the reduced Morse complex can be
theoretically retrieved from the gradient vector field with the same technique we applied

113

in the one-dimensional setting. Allili et al. [AKL16, AKLM15] have already adapted both
the algorithms in [KKM05] and [RWS11], which compute persistent homology through
a discrete Morse complex, to a vector-valued filtering function, producing an implemen-
tation working on 2-dimensional simplicial complexes.

114

Chapter 4

Homology Computation through
Multi-resolution Models

A multi-resolution model is a tool to encode and handle shape at different levels of de-
tail. The main purpose of this chapter is the development of methods for efficiently
computing homological information of a cell or of a simplicial complex by exploiting
a multi-resolution model. Besides improving the efficiency in homology computation,
these techniques allow the explicit retrieval of homology generators at different levels of
detail. In order to achieve this goal for cell and simplicial complexes, a general notion of
multi-resolution model is introduced first.

A key ingredient in the definition of a multi-resolution is represented by the operator used
to refine the input complex. In Section 4.1, two classes of topological operators, acting
on cell and simplicial complexes respectively, are introduced. Section 4.2 is devoted
to provide a consistent definition of a general geometry-based model able to represent
a shape at various levels of detail. In Section 4.3 and Section 4.4, this general model
is specialized for cell and simplicial complexes. For both situations, a multi-resolution
model based on homology-preserving operators is defined. The multi-resolution model
for cell complexes has been implemented and used to retrieve homological information
of each complexes which can be extracted from the model.

The cellular topological operators and the homology computation through a cellular multi-
resolution model have been presented in [ČomićDIF14]. For a more detailed treatment of
simplicial operators please refer to [DFW12]. The definition of a general multi-resolution
model and its specialization for simplicial complexes, presented in Section 4.2 and 4.4,
will be soon collected in a work currently in preparation.

4.1 Topological operators for cell and simplicial complexes

In the literature, several operators for manipulating cell and simplicial complexes have
been introduced [DL03, DGDP12, BADSM08, EW79, BHS80, MS82, Man88, LL01,
MSNK89, Mas93, Gom04, LPT+03, Mat02, LT97]. Most of the proposed classes of

115

operators have been defined for low dimensional complexes, or they do not represent
a set able to describe all the possible modifications of a complex. In this section, we
propose two complete classes of dimension-independent operators for cell and simplicial
complexes, respectively, that will play an important role in the multi-resolution models
we are going to define.

4.1.1 Operators for cell complexes

In this subsection, we present a class of operators to modify cell complexes in arbitrary
dimensions [ČomićDIF14]. Further, we show that this class of modifications forms a
minimally complete basis for the set of all possible operators that modify cell complexes
in a topologically-consistent manner.

These operators can be easily classified according to their effect on the homology of the
cell complex on which they are applied:

• homology-preserving operators: KiC(i + 1)C (Kill i-Cell and (i+1)-Cell), which
removes an i-cell and an (i + 1)-cell, and its inverse MiC(i + 1)C (Make i-Cell
and (i+1)-Cell);

• homology-modifying operators: KiCiCycle (Kill i-Cell and i-Cycle), which re-
moves an i-cell and an i-cycle, and its inverse MiCiCycle (Make i-Cell and i-
Cycle).

There are in total d homology-preserving and d + 1 homology-modifying operators on
cell complexes of dimension d.

4.1.1.1 Homology-preseving operators

Given a cell complex Γ, homology-preserving operators KiC(i + 1)C (Kill i-Cell and
(i+1)-Cell) change the number of cells in Γ by decreasing the number ni of i-cells and
the number ni+1 of (i+ 1)-cells by one unit. There are two types of homology-preserving
operators:

• contract, denoted as KiC(i+ 1)Cco(q, p, p
′);

• remove, denoted as KiC(i+ 1)Cre(q, p, p
′).

Operator KiC(i+ 1)Cco(q, p, p
′) is feasible on Γ under the following conditions:

• the (i + 1)-cell q of Γ is bounded by two i-cells of Γ (the i-cell p to be deleted and
the i-cell p′ which will remain),

• the i-cell p is a regular face of the (i+ 1)-cell q.

116

Under these assumptions, the effect of contract operator KiC(i + 1)Cco(q, p, p
′) on Γ is

as follows:

• cells p and q are removed,

• i-cell p is replaced by i-cell p′ on the boundary of each (i+1)-cell r in the cobound-
ary of i-cell p.

An example of contract operator KiC(i + 1)Cco(q, p, p
′) is depicted in Figure 4.1. The

illustrated K0C1Cco(q, p, p
′) operator removes vertex p and 1-cell q and replace p by p′

in the boundary of 1-cell r.

Figure 4.1: Effect of contract operator K0C1Cco(q, p, p
′) on a 2-dimensional cell com-

plex.

Contract operator can be applied even if i-cell p′ does not exists and the boundary of the
(i + 1)-cell q to be deleted consist of just the i-cell p. In this situation, under the condi-
tion that the i-cell p is a regular face of the (i + 1)-cell q, contract operator is denoted as
KiC(i+ 1)Cco(q, p) and its effect is to delete both cells p and q from the complex.

The second type of homology-preserving operator is called remove and it is denoted as
KiC(i + 1)Cre(q, p, p

′). remove operator KiC(i + 1)Cre(q, p, p
′) is feasible on Γ under

the following conditions:

• i-cell q of Γ is a face of two (i + 1)-cells (the (i + 1)-cell p to be deleted and the
(i+ 1)-cell p′ which will remain),

• i-cell q is a regular face of the (i+ 1)-cell p.

The effect of remove operator KiC(i + 1)Cre(q, p, p
′) is completely dual with respect to

that of contract operator:

• cells p and q are removed,

• (i+ 1)-cell p is replaced by (i+ 1)-cell p′ on the coboundary of each i-cell r in the
boundary of (i+ 1)-cell p.

An example of remove operator KiC(i + 1)Cre(q, p, p
′) is depicted in Figure 4.2. The

illustrated K0C1Cre(q, p, p
′) operator removes 1-cell p and 2-cell q and replace p by p′ in

the coboundary of 1-cells r1 and r2.

117

Figure 4.2: Effect of remove operatorK0C1Cre(q, p, p
′) on a 2-dimensional cell complex.

Remove operator can be applied even if (i+ 1)-cell p′ does not exists and the coboundary
of i-cell q to be deleted consist of just (i + 1)-cell p. In this situation, under the condi-
tion that the i-cell q is a regular face of the (i + 1)-cell p, remove operator is denoted as
KiC(i+ 1)Cre(q, p) and its effect is to delete both cells p and q from the complex.

InverseMiC(i+1)C (Make i-Cell and (i+1)-Cell) operators adds an i-cell and an (i+1)-
cell to the complex Γ. Again, we have operators of two different types:

• expand, denoted as MiC(i+ 1)Cex(q, p, p
′), inverse of contract operator KiC(i+

1)Cco(q, p, p
′);

• insert, denoted as MiC(i + 1)Cin(q, p, p′), inverse of remove operator KiC(i +
1)Cre(q, p, p

′).

Expand operator MiC(i+ 1)Cex(q, p, p
′)

• subdivides the existing i-cell p′ into two by splitting its coboundary,

• creates (i+ 1)-cell q bounded by the two i-cells p and p′.

Insert operator MiC(i+ 1)Cin(q, p, p′)

• subdivides the existing (i+ 1)-cell p′ into two by splitting its boundary,

• creates i-cell q separating the two (i+ 1)-cells p and p′.

In both cases, the new i-cell is a regular face of the new (i+ 1)-cell. Examples of expand
and insert operators are depicted in Figure 4.1 and 4.2, respectively. In such figures, the
two operators are not explicitly represented but they can be considered as the operators
transforming the cell complex depicted in the right into the cell complex in the left.

The inverse operators of contractKiC(i+1)Cco(q, p) and of removeKiC(i+1)Cre(q, p)
are denoted as MiC(i+ 1)Cex(q, p) and MiC(i+ 1)Cin(q, p), respectively.

Operator MiC(i+ 1)Cex(q, p) creates

• an i-cell p and an (i+ 1)-cell q bounded only by p.

Dually, operator MiC(i+ 1)Cin(q, p) creates

118

• an (i+ 1)-cell q and an i-cell p bounding only q.

In both cases, the new i-cell appears exactly once on the boundary of the new (i+ 1)-cell.

By using discrete Morse theory, it is easy to prove that the application of one of the above
defined operators on a cell complex Γ actually preserves its homology.

Proposition 4.1. Operators KiC(i+ 1)C and MiC(i+ 1)C preserve the homology with
coefficients in any Abelian group.

Proof. Since MiC(i + 1)C are the inverse operators of KiC(i + 1)C, it is sufficient to
prove that KiC(i + 1)C are homology-preserving operators. Let Γ be a cell complex,
KiC(i + 1)C the operator that deletes an i-cell p and an (i + 1)-cell q from Γ and let Γ′

be the resulting cell complex. Let f : Γ→ R be the discrete Morse function defined by

f(x) =

{
dimx if x ∈ Γ \ {p, q}
dim p+ dim q

2
= i+ 1

2
otherwise

The chain complex associated with Γ′ represents the discrete Morse complex associated
with Γ with respect to function f . By Theorem 1.48, we conclude that H∗(Γ;G) ∼=
H∗(Γ

′;G) for any Abelian group G.

4.1.1.2 Homology-modifying operators

Homology-modifying operators change the number of cells in a complex Γ plus its Betti
numbers. Given a cell complex Γ, homology-modifying operator KiCiCycle (Kill i-Cell
and i-Cycle) deletes an i-cell and destroys an i-cycle, thus decreasing the numbers ni of
i-cells in Γ and the ith Betti number βi of Γ by one unit. It is feasible on a cell complex Γ
if the coboundary of the cell to be deleted is empty.

The inverse MiCiCycle (Make i-Cell and i-Cycle) increases the number ni of i-cells and
the number βi of independent non-bounding i-cycles by a unit. It is feasible on a complex
Γ if all the cells on the boundary of the cell to be created are in Γ.

An example of application of such operators is illustrated in Figure 4.3. Operator
M0C0Cycle creates a new vertex and a new connected component, it increases by a
unit the number of 0-cells and the 0th Betti number β0. It is used as an initialization op-
erator to create a new complex Γ. Operator M1C1Cycle creates a new edge and a new
1-cycle, thus increasing both the number of 1-cells and the first Betti number β1 by one
unit. Operator M2C2Cycle creates a new face and a new 2-cycle, thus increasing the
number of 2-cells and the second Betti number β2 by one unit.

4.1.1.3 Minimality and completeness

The operators described in this subsection form a minimal set of operators on cell com-
plexes in arbitrary dimensions, in such a way that any other operator can be expressed as

119

(a) (b) (c)

Figure 4.3: Examples of homology-modifying operators on a 2-complex: M0C0Cycle
(Make 0-Cell and 0-Cycle) (a);M1C1Cycle (Make 1-Cell and 1-Cycle) (b);M2C2Cycle
(Make 2-Cell and 2-Cycle) (c).

suitable combination of those in the minimal set.

Proposition 4.2. The operatorsKiC(i+1)C,KiCiCycle and their inverseMiC(i+1)C,
MiCiCycle form a minimal and complete basis of operators for creating and updating
d-dimensional cell complexes.

Proof. To prove this fact, we interpret such operators as ordered (2d+ 2)-tuples
(x0, x1, . . . , xd, c0, c1, . . . , cd) in an integer grid, belonging to the hyperplane Π:

∑d
i=0

(−1)ixi =
∑d

i=0(−1)ici defined by the Euler-Poincaré formula (Proposition 1.29 in Sub-
section 1.2.1.2). The first d+1 coordinates denote the number of i-cells created or deleted
by the operator, depending on the sign of the coordinate, while the last d+ 1 coordinates
denote the change in the Betti numbers of the complex induced by the operator. Operator
MiC(i+ 1)C, 0 ≤ i ≤ d− 1, has coordinates

xj =

{
1 for j = i, i+ 1

0 otherwise

cj = 0 for j ∈ {0, 1, . . . , d}

Operator MiCiCycle, 0 ≤ i ≤ d, has coordinates

xj = cj =

{
1 for j = i

0 otherwise

In the following, the operators MiC(i + 1)C and MiCiCycle endowed with a negative
coefficient have to be considered as the operators KiC(i+ 1)C and KiCiCycle, respec-
tively.
In order to prove the proposition, we have to show that any (2d + 2)-tuple in the hyper-
plane Π can be expressed as a linear combination of 2d+ 1 (2d+ 2)-tuples corresponding
to our operators. A tuple (a0, a1, . . . , ad, b0, b1, . . . , bd) in the hyperplane Π (i.e., such that∑d

i=0(−1)iai =
∑d

i=0(−1)ibi) can be expressed through the 2d+1 independent (2d+2)-
tuples corresponding to our operators as

∑d−1
i=0 αiMiC(i + 1)C +

∑d
i=0 βiMiCiCycle

if

(a0, a1, . . . , ad, b0, b1, . . . , bd) =

= (α0 + β0, α0 + α1 + β1, α1 + α2 + β2, . . . , αd−2 + αd−1 + βd−1, αd−1 + βd, β0, β1, . . . , βd)

120

It follows that βi = bi, 0 ≤ i ≤ d, and

α0 = a0 − b0

α1 = a1 − b1 − α0 = (a1 − a0)− (b1 − b0)

α2 = a2 − b2 − α1 = (a2 − a1 + a0)− (b2 − b1 + b0)
...
αd−1 = (ad−1 − ad−2 + · · ·+ (−1)da0)− (bd−1 − bd−2 + · · ·+ (−1)db0) = ad − bd

In short, αi =
∑i

j=0(−1)i−jaj −
∑i

j=0(−1)i−jbj , 0 ≤ i ≤ d − 1 (αd−1 = ad − bd) and
βi = bi, 0 ≤ i ≤ d. Thus, each operator satisfying Euler-Poincaré formula on a cell
complex Γ can be expressed as a linear combination of our operators.
In the space (hyperplane) of dimension 2d + 1, a generating set consisting of 2d + 1
independent tuples forms a basis for the hyperplane.

4.1.1.4 Comparison with other operators for cell complexes

In the literature, several operators modifying cell complexes have been introduced. The
completeness result just proven allows to describe such operators as combinations of the
operators introduced in this subsection. In particular, we can express in terms of these
operators the following remarkable modifications: removal and contraction operators,
Euler operators and handle operators. Please refer to [ČD12, ČomićDIF14] for a more
detailed discussion.

Removal and contraction operators
Removal and contraction operators have been introduced in digital geometry as simplifi-
cation operators on n-G-maps [DL03]. A Generalized (G-) map is a combinatorial struc-
ture for a cellular subdivided object of arbitrary dimension. The definition of a G-map is
based on a set of elements, called darts, and on some involution relations between them.
In this framework, the notion of cell is described in terms of the orbit of a dart while adja-
cency and incidence relations between the cells are implicitly encoded though the notion
of involutions.

Removal and contraction operators defined on n-G-maps acts as follows. An i-cell q,
0 ≤ i ≤ n − 1, can be removed in two cases: if it bounds exactly two different (i + 1)-
cells p and p′ and it appears exactly once on the boundary of both p and p′; or if it bounds
exactly one (i+ 1)-cell p and it appears exactly twice on the boundary of p. The contrac-
tion operator is dual.
The first instance of the removal operator is a special case of KiC(i+1)Cre(q, p, p

′), as it
requires that the i-cell q appears exactly once not only on the boundary of the (i+ 1)-cell
p but also on the boundary of the (i + 1)-cell p′. The effect of the first instance of the
removal operator is the same as the effect of KiC(i + 1)Cre. The second instance of the
removal operator may, but is not guaranteed to, preserve the topological characteristics
of the complex (it may produce cells that are not topological cells, or it may discon-

121

nect the complex). Thus, it cannot be classified either as a homology-preserving, or as a
homology-modifying operator.

In [DGDP12], homology generators of a cell complex are computed using two homology-
preserving simplification operators: the removal of an i-cell incident in exactly two (i+1)-
cells (which is the same as KiC(i + 1)Cre(q, p, p

′) and as the first instance of the re-
moval operator in [DL03]) and the removal of a dangling cell (which is the same as
KiC(i + 1)Cre(q, p)). The inverse (refinement) insertion and expansion operators have
been introduced in [BADSM08]. They are the same as MiC(i + 1)Cin(q, p, p′) and
MiC(i+ 1)Cex(q, p, p

′), respectively.

Euler operators
Virtually all the proposed sets of basis Euler operators on cell 2- and 3-complexes con-
tain MEV (Make Edge and Vertex) and MEF (Make Edge and Face) operators, which
are the same as M0C1C (Make 0-cell and 1-cell) and M1C2C (Make 1-cell and 2-cell),
respectively.
Several homology-modifying operators have been proposed for cell 2-complexes that de-
fine the boundary of a solid in R3, called boundary models. In these models, there is only
one implicitly represented volumetric cell, which is not necessarily homeomorphic to a
3D ball.

The glue operator in [EW79] merges two 2-cells and deletes both of them. It corresponds
to the connected sum operator on surfaces. If the two glued 2-cells belong to two differ-
ent connected components of the complex, one of the components is deleted (and β0 is
decreased by a unit). If the two glued faces belong to the same connected components, a
handle or through-hole is created (and β1 is increased by two units).
In [BHS80, MS82, Man88], the homology-modifying operator is called MRKF (Make
Ring, Kill Face). It is similar to the glue operator in [EW79], but it imposes less restrictive
conditions on the 2-cells to be glued, and it deletes only one of the 2-cells. The 2-cells
are not supposed to be topological (homeomorphic to a 2D ball).

Homology-modifying operators defined for arbitrary cell 2-complexes in R3 [LL01] are
called MECh (Make Edge and Complex Hole), MFKCh (Make Face, Kill Complex
Hole) and MFCc (Make Face and Complex Cavity). They are the same as operators
M1C1Cycle, M2CK1Cycle (Make 2-Cell Kill 1-Cycle, which can be expressed as
K1C1Cycle,M1C2C) andM2C2Cycle, respectively. For 3-complexes in R3 [MSNK89,
Mas93], an additional homology-modifying operator is defined, called MV lKCc (Make
Volume, Kill Complex Cavity). It is the same as M3CK2Cycle (Make 3-Cell, Kill 2-
Cycle) operator, and can be expressed as K2C2Cycle, M2C3C.

In [Gom04], the operators defined in [MSNK89] have been extended to complexes called
stratifications, in which the cells, called strata, are defined by analytic equalities and
inequalities. The cells are not necessarily homeomorphic to a ball, and they may have in-
complete boundaries. Among the operators on stratifications proposed in [Gom04], oper-
ators on topological cells (that are homeomorphic to a ball) with complete boundaries can
be classified as homology-preserving (called cell subdividers) and homology-modifying
(called global hole shapers). Both types of operators are instances of the introduced
atomic operators. A cell subdivider subdivides an i-cell by inserting into it an (i−1)-cell.

122

This operator is the same as the M(i− 1)CiC operator.
A global hole shaper either attaches or detaches a cell, thus creating a hole. There are two
instances of this operator: the attached topological i-cell creates an i-hole or the detached
topological i-cell creates an (i−1)-hole. The first instance of this operator corresponds to
MiCiCycle. The second instance corresponds to KiCM(i− 1)Cycle (Kill i-Cell, Make
(i-1)-Cycle), and can be expressed as M(i− 1)C(i− 1)Cycle, K(i− 1)CiC.
The inverse homology-modifying operators attach or detach a cell, thus deleting a hole.
They correspond toKiCiCycle andMiCK(i−1)Cycle (inverse toKiCM(i−1)Cycle),
respectively.

Handle operators
(Homology-modifying) handle operators on a cell 2-complex Γ triangulating a surface S
have been introduced in [LPT+03]. They are based on the handlebody theory for surfaces
[Mat02], stating that any surface S can be obtained from a 2-ball by iteratively attaching
handles (0-, 1- and 2-handles).
Attachment of a 0-handle creates a new surface with one face, three edges and three
vertices. It can be expressed as one M0C0Cycle operator, two M0C1C operators and
one M1C2C operator, which together create a triangle. The operator that corresponds to
the attachment of a 1-handle identifies two boundary edges of Γ (incident in exactly one
face) with no vertices in common. The operator that corresponds to the attachment of a
2-handle identifies two boundary edges of Γ with two vertices in common. They can be
expressed through our operators in a similar manner.

Handle operators have been extended to 3D in [LT97]. The operator that creates a new
3-ball (initialization operator) corresponds to the attachment of a 0-handle. Other op-
erators identify two boundary faces (incident in exactly one 3-cell) of a cell 3-complex
Γ triangulating a solid S. The attachment of a 1-handle (2-handle, or 3-handle) can be
applied if the two identified boundary faces have no edges (some edges, or all edges) in
common. The handle operators in 3D generalize the glue operator in [EW79]. They can
be expressed in terms of the introduced atomic operators in a similar manner.

4.1.2 Operators for simplicial complexes

We present here a complete set of dimension-independent operators for modifying and
updating simplicial complexes [DFW12].
They cannot explicitly be classified in homology-preserving and homology-modifying
operators. We refer to Subsection 4.1.2.2 for the discussion about their effects on the ho-
mology.

The class of simplicial operators we consider consists of:

• (elementary) excision, which removes from the input simplicial complex a top sim-
plex, and its inverse called (elementary) inclusion;

123

• edge contraction, which collapses two vertices of the input simplicial complex and
the edge connecting them into a new vertex, and its inverse called vertex split.

Given a simplicial complex Σ and a top simplex σ in Σ, the (elementary) excision
excision(σ) consists of the removal of σ from Σ. Conversely, the (elementary) inclusion
inclusion(σ) on a simplicial complex Σ, already containing the boundary of σ, adds a
new simplex σ to Σ .

An example of elementary excision is illustrated in Figure 4.4. Conversely, the transfor-
mation of the simplicial complex depicted on the right into the simplicial complex on the
left represents an example of elementary inclusion.

Figure 4.4: Effect of the elementary excision excision(σ) on a 2-dimensional simplicial
complex.

Edge contraction operator has been already introduced in Subsection 2.3.3.3. From now
on, we just consider edge contraction operators collapsing two vertices of a simplicial
complex Σ actually forming an edge of Σ. Given a simplicial complex Σ and two of its
vertices u and v, the edge contraction contraction(u, v, w) can be seen as the simplicial
map f induced by the vertex map fV taking vertices u and v to w and all other vertices
to themselves. According to this description, the effect of contraction(u, v, w) on Σ can
be described as the substitution of each simplex σ containing u or v with a new simplex
obtained from σ in which vertices u and v have been replaced by vertex w.

The vertex split operator is the inverse of the edge contraction and it is denoted as
split(u, v, w). Given a simplicial complex Σ and a vertex w of Σ, split(u, v, w) creates
an edge uv in place of a vertex w. In order to actually perform vertex split split(u, v, w),
the following information is required:

1. for each coface σ of w, i.e., σ = w v1 · · · vk, simplices u v1 · · · vk or v v1 · · · vk or
both with which σ will be substituted;

2. the simplices which will contain edge uv forming its star.

The effect of split(u, v, w) on a simplicial complex Σ is the following:

• substitute, accordingly to 1., each coface σ = w v1 · · · vk of w with simplices
u v1 · · · vk or v v1 · · · vk or both;

• introduce the simplices declared in 2. containing the edge uv.

124

A vertex split split(u, v, w) operated on a simplicial Σ is considered valid if and only if
its effect actually produces a simplicial complex.
An example of edge contraction is illustrated in Figure 4.5. Conversely, the transformation
of the simplicial complex depicted on the right into the simplicial complex on the left
represents an example of a vertex split.

Figure 4.5: Effect of the edge contraction contraction(u, v, w) on a 2-dimensional sim-
plicial complex.

In the following, without loss of generality, we will often consider edge contractions
contraction(u, v, w) for which w coincides with v. We will simply denote this operator
as contraction(u, v) , and its inverse operator as split(u, v).

4.1.2.1 Minimality and completeness

By iteratively performing operators of (elementary) excision, any simplicial complex Σ
can be transformed into the empty simplicial complex ∅. Dually, Σ can be retrieved
starting from the empty simplicial complex ∅ and iteratively performing operators of (ele-
mentary) inclusion. As immediate consequence of these considerations we can claim the
following proposition.

Proposition 4.3. The operators of (elementary) excision and inclusion form a minimal
and complete basis of operators for creating and updating simplicial complexes.

Proposition 4.3 trivially ensures that the set of modifications consisting of elementary ex-
cisions, edge contractions and their inverse operators forms a complete basis for the set
of operators for creating and updating simplicial complexes. At the same time, Proposi-
tion 4.3 implies that the considered basis is not minimal since each edge contraction and
vertex split can be expressed as a combination of elementary excisions and inclusions.
Specifically, let us consider operator contraction(u, v, w). According to the above defi-
nition, the execution of contraction(u, v, w) on a simplicial complex Σ can be described
as the performance of:

• the excisions, ordered by descending dimension, of all the simplices of Σ containing
u or v;

• the inclusions, ordered by ascending dimension, of the just excised simplices in
which vertices u and v have been replaced by w.

125

The reason why we choose to include edge contractions and vertex splits in our discus-
sion is related to our purpose of building a multi-resolution model with an high expressive
power. In fact, even if an edge contraction can be expressed as a suitable combination of
excisions and inclusions, it cannot be obtained by using just one kind of these operators,
for instance using only excisions. So, if during the construction of a multi-resolution
model we choose as simplifications operators only elementary excisions, no edge con-
traction will be performed in the simplifying process. Since, as we will see in Section 4.2,
the expressivity of a multi-resolution model deeply depends on the variety of simplifica-
tion operators we can apply, the choice of not involving edge contraction operators could
cause serious limitations in the obtained model.

4.1.2.2 Homology-preserving simplicial operators

Similarly to the cellular case, we would like to characterize the introduced simplicial op-
erators according to their effects on the homology of the simplicial complex on which they
are performed. To understand in which conditions these operators preserve the homology
will be useful for the construction of an homology-preserving multi-resolution model for
simplicial complexes.

According to the incremental method proposed in [DE93], adding to a simplicial complex
a single simplex of dimension k either creates a non-bounding k-cycle or kills a (k − 1)-
homology class. In both the cases, the homology of the obtained simplicial complex is
modified with respect to the one of the original simplicial complex. For this reason, an
elementary inclusion and its undo (elementary excision) are homology-modifying opera-
tors.
In spite of this, a suitable combination of two elementary excisions gives rise to a ho-
mology-preserving simplicial operator called (elementary) reduction [MB09]. As already
described in Subsection 2.3.3.2, given a simplicial complex Σ, an (elementary) reduction
reduction(σ, τ) removes a pair of simplices σ and τ of dimension k and k+1 respectively
if the immediate coboundary cbdΣ σ of σ consists only of τ . Given a reduction operator
reduction(σ, τ) , we denote its inverse, which suitably adds the pair of simplices σ, τ of
consecutive dimensions, as expansion(σ, τ) . As mentioned above and depicted in Figure
4.6, a reduction operator, and so its inverse, does not modify the homology and it can be
considered as the combination of the elementary excisions of τ and of σ.

Edge contraction is not, in general, a homology-preserving operator. Given a simplicial
complex Σ, an edge uv in Σ satisfies the link condition if and only if

linkΣ uv = linkΣ u ∩ linkΣ v

As stated by Theorem 2.11 in Subsection 2.3.3.3, if the edge uv satisfies the link condi-
tion, then the edge contraction collapsing uv is homology-preserving. See Figure 2.6 for
an example.

The above considerations lead us to choose as privileged class of homology-preserving

126

Figure 4.6: The reduction reduction(σ, τ) removing the simplices σ and τ and its decom-
position in elementary excisions excision(τ), excision(σ) .

simplicial operators the one consisting of elementary reductions and edge contractions
satisfying the link condition.

4.2 A general multi-resolution model

As mentioned before, the main goal of this chapter is to exploit multi-resolution models
to efficiently retrieve cellular or simplicial homology of a complex and its homological
generators at different levels of detail. To achieve this task, we provide a definition of
multi-resolution model able to generalize both the cellular and the simplicial case.

4.2.1 Operators

Fundamental tools to build a multi-resolution model are a cell complex Γ and a class of
operators. Up to now, we have informally considered an operator (or modification) µ as
an operation that transforms a cell complex Γ into a new cell complex by replacing a set
of cells Γ1 of Γ with another set of cells Γ2. Given an operator µ, we have referred to
the inverse operator µ−1 with respect to µ as the one which transforms a cell complex
containing Γ2 by replacing the cells in Γ2 with the ones in Γ1 and obtaining a new cell
complex.

In order to describe a multi-resolution model, these intuitive notions have to be turned in
more rigorous definitions. A formal definition of an operator can be obtained by focusing
on its effects in terms of the Hasse diagram of the cell complexes involved in its appli-
cation. As we know, there is a complete correspondence between the Hasse diagram of
a cell complex and its representation as an Incidence Graph (see Section 2.1). Thanks to
this, in order to simplify the discussion, we can define the notion of operators in terms of
Incidence Graph modifications without losing generality or creating ambiguities. In the

127

following, we will make use of the notion of graph subset.

Definition 4.4. Given a graph G = (N,A), a graph subset H1 of G is a pair (N1, A1) of
sets such that N1 ⊆ N and A1 ⊆ A.

Since the above definition does not ensure that the nodes of an arc of A belonging to A1

are contained in N1, a graph subset of G is not, in general, a subgraph of G. In spite of
this, with a little abuse of notation, in the following we will denote the elements of N1

and A1 as the nodes and the arcs of graph subset H1, respectively.

Let µ be an operator that applied to the cell complex Γ returns the cell complex Γ′ by
replacing Γ1 with Γ2 and let G = (N,A), G′ = (N ′, A′) be the Incidence Graphs of Γ,
Γ′, respectively. The effect of the operator µ can be described as a substitution of a graph
subset of G in order to retrieve G′. Let H1 = (N1, A1) be the graph subset of G whose
set of nodes N1 ⊆ N corresponds to the subset of cells Γ1 ⊆ Γ to be removed and whose
set of arcs A1 ⊆ A represents the immediate boundary and coboundary relations in Γ of
the cells in Γ1. Let H2 = (N2, A2) be the graph subset of G′ whose set of nodes N2 ⊆ N
corresponds to the subset of cells Γ2 ⊆ Γ to be created and whose set of arcs A2 ⊆ A rep-
resents the immediate boundary and coboundary relations in Γ′ of the cells in Γ2. Thus,
we can consider operator µ as the pair (H1, H2) and its effect as the replacement of H1 of
G with H2 obtaining the Incidence Graph G′ of Γ′.

Definition 4.5. An operator µ is a pair (H1, H2) of graph subsets Hi = (Ni, Ai).
Let Γ be a cell complex and let G = (N,A) be the Incidence Graph of Γ. The operator
µ = (H1, H2) is said to be feasible on Γ if

• H1 is a graph subset of G of Γ, and

• G′ := (N ′, A′), whereN ′ = (N \N1)∪N2 andA′ = (A\A1)∪A2, is the Incidence
Graph of a cell complex Γ′.

The above definition allows us to consider two operators performing exactly the same sub-
stitution of cells and boundary and coboundary relations even if applied on different cell
complexes as the same operator. For instance, the two transformations depicted in Figure
4.7 collapsing edge e2 into the vertex v′ are actually the same operator µ, but applied on
different cell complexes. At the same time, we want to distinguish between two operators
which behave analogously but which involve different cells. The given definition allows,
for instance, us to distinguish and to differently name the operator collapsing edge e1 and
the one collapsing edge e2 of the cell complex depicted in the top left corner of Figure 4.7.

According to the intuitive description provided above, given an operator µ = (H1, H2),
we define the inverse operator µ−1 of µ as the pair (H2, H1). An operator µ is called a
simplification operator if it reduces the number of cells of cell complex Γ on which is
applied. Conversely, if µ increases the number of cells of Γ, it is called a refinement op-
erator.

128

(a)

(b)

Figure 4.7: The operator µ contracting the edge e2 applied in two different domains (a)
and (b). For both the situations, the operation of µ is depicted in terms of modifications
on the cell complex and on the Incidence Graph. The graph subsets H1 = (N1, A1)
and H2 = (N2, A2) consist of the nodes and the arcs represented in red and light blue,
respectively.

4.2.2 Multi-resolution cell complexes

Let Γ be a cell complex considered at full resolution. Suppose to iteratively apply on
Γ a sequence of feasible simplification operators which do not reintroduce any already

129

removed cell. We define as

• base complex the coarse complex ΓB obtained at the end of the simplification pro-
cess,

• the set of the refinement modifications the setM of the refinement operators inverse
with respect to the simplifications that have produced ΓB from Γ.

For simplicity, we consider the creation of the coarse complex ΓB as a refinement modi-
fication inM. We denote this dummy refinement modification as µ0 (i.e., µ0 = (∅, GB),
where GB is the Incidence Graph of ΓB).

Given an operator µ = (H1, H2) inM, we define Cµ as the set of the cells corresponding
to the extreme nodes of the arcs in A1 and in A2 which do not belongs to N1. Intuitively,
the set Cµ consists of the cells whose immediate boundary or immediate coboundary has
been modified by the execution of µ, including also the cells removed by the application
of µ.

Definition 4.6. Given two refinement modifications µ, µ′ in M, we say that µ directly
depends on µ′ if µ′ creates a cell belonging to Cµ.

This notion of dependency between refinement modifications allows us to define a depen-
dency relation R between the elements ofM. The dependency relation R is defined to
be the transitive closure of the relation of direct dependency introduced above. Note that,
during the coarsening step to obtain ΓB from Γ, a cell can be removed just once, the same
cell is never introduced twice by the refinements inM. Thus,R is a partial order relation.

The three components introduced above allow us to define a multi-resolution model.

Definition 4.7. According to the introduced notations, we define the Multi-Resolution
Cell Complex (MRCC) as the triple (ΓB,M,R).

Since the dependency relation R is a partial order relation, an MRCC can be encoded
through a graph structure representing the set of refinement modifications and the direct
dependency relation between pairs of modifications. Thus, an MRCC can be encoded
by using a Direct Acyclic Graph (DAG), in which

• the root encodes the creation of the base complex ΓB (i.e., modification µ0);

• the nodes are in one-to-one correspondence with the refinement modifications in
M;

• the arcs represent the direct dependency relation generating R, i.e., given two dis-
tinct nodes µ and µ′, arc (µ′, µ) exists iff µ directly depends on µ′.

The data structure encoding such a DAG has to store the information required to retrieve
the associated MRCC. Specifically, each node of the DAG has to contain the neces-
sary data to correctly perform the corresponding refinement modification. This can be

130

obtained by encoding, for each node of the DAG, the two graph subsets H1, H2 which
completely describe the correspondent refinement µ = (H1, H2). For the root, represent-
ing the modification µ0 = (∅, GB), storing this information is equivalent to encode the
Incidence Graph GB of the coarse complex ΓB.

Mainly due to the general context in which the MRCC has been defined, the proposed
encoding leads to a data structure with a high storage cost. Specific compact encoding of
a multi-resolution model can be defined by considering specific refinement modifications
(see Subsection 4.3.2 and 4.4.2).

The DAG encoding an MRCC can be built by starting from cell complex Γ at the finest
resolution. A sequence of simplifications is applied on Γ. Information about all the simpli-
fications performed are saved in a stack. Once the sequence of simplifications terminates,
the DAG is initialized with the root node storing the Incidence Graph GB of the cell
complex ΓB at the coarsest resolution. Then, for each element in the stack, a new node
in the DAG and the arcs connecting it to the nodes already in the DAG are created and
the information required to correctly perform the refinement corresponding to the created
node are stored.

4.2.3 Selective refinement extraction

From anMRCC, a large number of complexes at intermediate resolution can be obtained
by applying sequences of refinement modifications inM to the base complex ΓB.

Definition 4.8. A sequence U = (µ0, µ1, µ2, · · · , µm) of refinements inM is feasible if
µ1 is feasible on the base complex ΓB and each refinement µi, 1 ≤ i ≤ m is feasible
on the complex Γi−1 obtained from the base complex ΓB by applying on it the sequence
(µ1, µ2, · · · , µi−1).

Definition 4.9. Given a feasible sequence U = (µ0, µ1, µ2, · · · , µm) of refinements inM,
the front complex ΓU associated with U is the complex obtained from the base complex
ΓB by applying on it the sequence of refinements (µ1, µ2, · · · , µm).

The front complex represents the topological structure of the cell complex Γ at an inter-
mediate level of detail. If the feasible sequence U contains all the refinements inM, then
the front complex ΓU associated with U is the same as the complex Γ at full resolution.
The following results characterize the set of the front complexes that can be extracted
from an MRCC (Proposition 4.11) and ensure us that a feasible sequence of refinements
produces the same front complex independently from the order in which the modifications
are operated (Proposition 4.13).

Thanks to the dependency relation R, the feasibility of a refinement on a front complex
ΓU can be quickly checked.

Lemma 4.10. Let ΓU be the cell complex obtained by applying a feasible sequence U of
refinements on the base complex ΓB. We have that a refinement µ inM is feasible on the
complex ΓU if and only if U contains the set of the refinement modifications from which µ
directly depends.

131

Proof. Since during the simplification process no removed cell can be reintroduced, U
contains the set of the refinement modifications from which µ = (H1, H2) directly de-
pends if and only if the set of cells Cµ is contained in ΓU . Further, the set Cµ consists
exactly of the cells required to perform the substitution of H1 with H2 in the Incidence
Graph of ΓU . So, ΓU contains the cells of Cµ if and only if the feasibility conditions of µ
are satisfied. Finally, the fact that the operator µ is the inverse of an operator performed
in the simplification process guarantees that the performance of µ on ΓU returns a cell
complex.

A large number of adaptive morphological representations can be extracted from the
multi-resolution model defined by the triple (ΓB,M,R) by considering the closed sets
of refinements inM under the dependency relationR.

Proposition 4.11. The sequenceU = (µ0, µ1, µ2, · · · , µm) of refinements inM is feasible
if and only if the set U = {µ0, µ1, µ2, · · · , µm} is closed with respect to the dependency
relationR.

Proof. U = (µ0, µ1, µ2, · · · , µm) is a feasible sequence of refinements inM if and only
if, for each i, the refinement µi is feasible on the cell complex ΓUi−1

, where Ui−1 =
(µ0, µ1, µ2, · · · , µi1). By Lemma 4.10, this holds if and only if, for each i, the set Ui−1,
and thus the set U , contains all refinements on which the refinement µi directly depends.
This is true if and only if the set U = {µ0, µ1, µ2, · · · , µm} is closed with respect to the
dependency relationR.

Now, we want to show that the execution of a sequence of refinements with respect to two
different feasible orders leads to the same front complex.
Let (µ, µ′), (µ′, µ) be two feasible sequences of refinement operators on a front complex
ΓU . Since both sequences are feasible on ΓU , both the operators have to be feasible on
ΓU . This ensures that µ and µ′ are independent with respect to the dependency relation
R. The operators µ and µ′ are said interchangeable if the sequences (µ, µ′) and (µ′, µ)
performed on ΓU produce the same cell complex.

Lemma 4.12. Let µ, µ′ be two feasible refinements on a front complex ΓU . If µ and µ′ are
independent, then they are interchangeable.

Proof. Let us consider the operators µ and µ′ as the pairs (H1, H2) and (H ′1, H
′
2), respec-

tively. Since they are independent, no cell created by µ belongs to Cµ′ and, conversely, no
cell created by µ′ belongs to Cµ. So, in this context, both sequences of operators (µ, µ′)
and (µ′, µ) can be described as a single refinement operator acting on the Incidence Graph
of ΓU and substituting the graph subset obtained by the union of H1 and H ′1 with the one
obtained by the union of H2 and H ′2.

Proposition 4.13. Let U = (µ0, µ1, µ2, · · · , µm) be a feasible sequence of refinements
in M. If, applying the permutation µ0, µi1 , µi2 , · · · , µim of the refinements in U , the
sequence V = (µ0, µi1 , µi2 , · · · , µim) is a feasible sequence of refinements inM, then the
front complexes ΓU and ΓV are equal.

132

Proof. The sequence V is feasible if the permutation that defines V starting from U is
such that each refinement µij is feasible in sequence V . This means that each refinement
µik on which µij depends has a position ik < ij in V . The permutation defining V from U
is a composition of adjacent transpositions of two independent refinements (composition
of permutations obtained by reversing the order of two consecutive refinements). By
Lemma 4.12, for each such transposition, the associated front complex before and after
the transposition remains unchanged. Thus, the front complex ΓV associated with the
sequence V is the same as the front complex ΓU associated with the sequence U .

From a multi-resolution model, it is possible to dynamically extract representations of the
original cell complex Γ at uniform and variable resolutions. The basic query for extracting
a single-resolution representation from a multi-resolution model is known as selective
refinement. A selective refinement query consists of extracting from a multi-resolution
model a complex with the minimum number of cells, satisfying some application-depen-
dent criterion. This criterion can be formalized by defining a Boolean function ϕ over all
nodes of a multi-resolution model, such that the value of ϕ is true on nodes which satisfy
the criterion, and false otherwise. The same value of ϕ is associated with the cells created
by the modification encoded in the node of the MRCC.

The selective refinement query consists of extracting from the MRCC an intermediate
complex of minimum size among the complexes encoded in the MRCC that satisfies ϕ.
Equivalently, it consists of extracting a minimal closed set U of modifications inM, such
that the corresponding complex satisfies ϕ. Such closed set of modifications uniquely
determines a front complex, which is obtained from the base complex ΓB, by applying to
it all modifications from U in any order that is consistent with the partial order defined by
the dependency relation.

Criterion ϕ can be defined based on various conditions posed on the cells in the extracted
complex, like the size of the cell (which may be expressed as the maximum distance
between its vertices or the diameter of its bounding box) or the portion of the complex in
which full resolution is required (while in the rest of the complex, the resolution may be
arbitrarily low).

4.3 Cellular homology computation through a multi-res-
olution model

In this section, we define a multi-resolution model for cell complexes based on the set of
atomic modeling operators introduced in Subsection 4.1.1. Further, we define a version
of this model based on the subset of the proposed modeling operators which preserve
homology and we describe its implementation. We apply the homology-preserving multi-
resolution model to enhance the efficiency in extracting homology generators at different
resolutions. To this aim, we propose an algorithm which computes homology generators
on the coarsest representation of the original complex, and uses the hierarchical model to
propagate them to complexes at any intermediate resolution, and we prove its correctness.
For a more detailed description of the contributions presented in this section, please refer

133

to [ČomićDIF14].

4.3.1 The Hierarchical Cell Complex (HCC)

In this subsection, we introduce a multi-resolution model for cell complexes based on the
simplification and refinement operators described in Subsection 4.1.1. We call this model
Hierarchical Cell Complex (HCC), and we discuss its major properties.

This model is generated from a cell complex Γ considered at full resolution by iteratively
applying simplification operators KiC(i + 1)C and KiCiCycle. By applying first the
homology-preserving operators, we obtain a complex Γ′ having the same homology as
the original complex Γ but with fewer cells and such that no homology-preserving oper-
ator is feasible on Γ′. By applying next the homology-modifying operators to iteratively
remove the cells of Γ′, the homology is affected at each step and the process is repeated
until a complex is obtained that has at least one i-cell, 0 ≤ i ≤ d. At each step, when we
apply a homology-modifying operator, we remove a top cell from the complex. After each
application of a homology-modifying operator, we perform feasible homology-preserving
ones.
Analogously to the description of multi-resolution model given in Section 4.2, we define
a Hierarchical Cell Complex (HCC) as a triple (ΓB,M,R), where, given a cell com-
plex Γ, ΓB is the result of the sequence of simplification operators, M is the set of the
refinement modifications which are inverse with respect to the performed simplification
modifications andR is the dependency relation between the modifications inM.

A first step to properly build this model and retrieve its dependency relations is to describe
the involved operators in the form proposed in Subsection 4.2.1. Let us consider the
simplification operators KiC(i + 1)Cco(q, p, p

′) and KiCiCycle. The representation of
the remaining instances and of the inverse operators can be easily recollected to the one
of the considered operators. Our task is to represent the above mentioned operators as a
pair (H1, H2) of graph subsets, where Hi = (Ni, Ai).
The operator KiC(i+ 1)Cco(q, p, p

′) can be described as the pair (H1, H2) where:

• N1 is the set of nodes corresponding to cells p and q;

• A1 consists of the arcs representing the relations of immediate boundary and cobound-
ary of p and q;

• N2 is the empty set;

• A2 consists of the arcs representing the newly introduced boundary relations be-
tween the cells in the immediate boundary of p and p′.

The operator KiCiCycle, creating a cell p, can be described as the pair (H1, H2) where:

• N1 consists of the node corresponding to cell p;

134

• A1 consists of the arcs representing the relation of immediate boundary of p;

• the sets N2 and A2 are both empty.

As mentioned in Subsection 4.2.2, in order to define the relationR, it is enough to charac-
terize, for each refinement modification µ ∈M, the set Cµ. With respect to the operators
considered in this section,

• if µ is the homology-preserving refinement MiC(i+1)C creating cells p and q, Cµ
consists of the cells in the immediate boundary and coboundary of q and p except
for q and p themselves;

• if µ is the homology-modifying refinement MiCiCycle, creating a cell p, Cµ con-
sists of the cells in the immediate boundary of p.

This definition and the results proven in Subsection 4.2.3 ensure us that the multi-reso-
lution model HCC is well-defined and different selective refinements can be extracted
from it. Analogously to the general model MRCC, the operation of any sequence U of
refinement modifications performed in a consistent order and closed with respect to R
leads to the front complex ΓU representing Γ at a certain level of detail. As before, HCC
model allows to manage different refinement queries and to extract representations of the
original cell complex at uniform and variable resolutions.

Figure 4.8: A sequence of operators consisting of (from left to right) K1C2Cre (q, p, p′),
K1C2Cre(q1, p1, p

′
1) and K0C1Cco(q2, p2, p

′
2) on a 2-dimensional cell complex. Blue

dots (e.g., p2 and p′2) correspond to 0-cells, green dots (e.g., q, q1 and q2) to 1-cells and
red dots (e.g., p, p′, p1 and p′1) to 2-cells.

Figure 4.8 illustrates a sequence consisting of the simplification operators K1C2Cre
(q, p, p′), K1C2Cre (q1, p1, p

′
1) and K0C1Cco (q2, p2, p

′
2) operated on a 2-dimensional

cell complex Γ. In Figure 4.9, the HCC built from this sequence of simplifications is
depicted. We can notice that each node, with the exception of the root, represents a re-
finement dual to a simplification applied in Figure 4.8. Each closed subset of refinement
modifications produces a different cell complex at intermediate resolution.

135

Figure 4.9: An example of an HCC built from the simplification process illustrated in
Figure 4.8. The top level of the HCC is the root node encoding the complex at the coars-
est resolution. At the bottom level are two M1C2Cin operators. The M1C2Cin(q, p, p′)
depends on the M0C1Cex(q2, p2, p

′
2) and the M1C2Cin(q1, p1, p

′
1) depends only on the

root. Blue dots (e.g., p2 and p′2) correspond to 0-cells, green dots (e.g., q, q1 and q2) to
1-cells and red dots (e.g., p, p′ and p′1) to 2-cells. On the right, three different complexes
are shown, obtained by performing different closed sets of refinements on the HCC as
indicated by the red lines.

4.3.2 The Homology-preserving Hierarchical Cell Complex (HHCC)

Since our task is to use the defined multi-resolution model to quickly retrieve the homo-
logical information of any complexes represented in it, we focus here on the encoding and
the implementation of a multi-resolution model based only on homology-preserving oper-
ators. This model is called Homology-preserving Hierarchical Cell Complex (HHCC) and
it can be built iteratively performing feasible homology-preserving operatorsKiC(i+1)C
on a cell complex Γ.

4.3.2.1 Encoding an HHCC

As mentioned in Subsection 4.2.2, each multi-resolution model can be represented by a
Direct Acyclic Graph (DAG). Here, we describe dimension-independent encoding for an
HHCC that we have developed [ČomićDIF14]. The two data structures, called explicit
and implicit, differentiate in the way the cells, involved in each refinement, are encoded.
In the explicit data structure, we encode all the cells involved in each refinement explic-
itly. This leads to an efficient reconstruction of the information required to perform each

136

refinement µ. On the other side, we tried to reduce the memory consumption of the whole
data structure designing a more compact representation for the set of cells. The two en-
codings should represent the usual tradeoff between memory consumption and runtime
efficiency.

Both explicit and implicit encodings store the coarse cell complex ΓB in their root en-
coded as an Incidence Graph GB. Each node of the DAG represents a refinement mod-
ification µ = MiC(i + 1)C; µ encodes information about the refinement as well as its
dependencies on the other nodes.

The information stored for each node µ, in both explicit and implicit representations, are:

• a flag indicating the type of the refinement modification (expand or insert), and
the value of i;

• cells p and q to be reintroduced;

• a pointer to the DAG node corresponding to the modification µ′ introducing p′;

• an array, called ancestors, containing the pointers to the parents of µ

• an array, called descendants, containing the pointers to the children of µ.

These information identify the refinement operator represented by the DAG node µ.

Both our data structures encoding an HHCC are built by starting from the Incidence
Graph G describing the cell complex Γ at the finest resolution. A sequence of simpli-
fications is applied on G until there are no more feasible simplifications, or the size of
the resulting complex is below a predefined threshold. Information about all the simpli-
fications performed are saved in a stack. Each element of the stack represents a generic
simplification and stores all the nodes of G involved in its performance. Once there are
no more feasible simplifications, the base graph GB at the coarsest resolution, is stored in
the root of the DAG. To perform a refinement µ correctly we need to represent the set
of cells involved in the refinement. On their representation the two data structures differ.
In the following, without loss of generality, we consider the case in which µ in M is a
MiC(i+ 1)Cex(q, p, p

′) operator. Let us suppose that the operator µ−1, performed during
the simplification sequence generating the HHCC, has been applied to the cell complex
Γ′′ transforming it into the cell complex Γ′. In order to retrieve the refinement operators
from which µ directly depends and to correctly perform the operator µ, we consider the
following sets of cells:

• S consisting of the (i+ 2)-cells in Γ′′ which are cofaces of q;

• Z consisting of the (i− 1)-cells in Γ′′ which are faces of p;

• R consisting of the (i+ 1)-cells in Γ′′ which are cofaces of p but not of p′;

• R′ consisting of the (i+ 1)-cells in Γ′′ different from q which are cofaces both of p
and p′.

137

By knowing these sets of cells, p, p′ and q, the dependency relations of µ and the effect of
the execution of µ can be easily described. Specifically, Cµ coincides with S ∪ Z ∪ R ∪
R′ ∪ {p′}.
Let us consider a front complex ΓU of the HHCC on which the refinement operator µ is
feasible. The effect of µ on ΓU is the following:

• cells p and q are added to ΓU ;

• set S is declared as the immediate coboundary of q;

• cells p and p′ are declared as the cells in the boundary of p

• set R ∪R′ ∪ {q} is declared as the immediate coboundary of q;

• set Z is declared as the immediate boundary of q;

• immediate coboundary of p′ is updated by removing the cells in R and adding cell
q.

In the explicit data structure, cells in S, Z, R and R′ are encoded explicitly for each
node in the structure. During the building process, a new node in the DAG is created
for each element in the stack. The type of the node is initialized based on the type of the
simplification operator, and also the cells p and q removed by the operator and the pointer
to the third cell p′ are encoded. Then, all cells in sets S, Z,R andR′ are explicitly referred
to a pointer (4 bytes per cell) and one list of pointers is stored for each set S, Z, R and
R′. The resulting structure allows for a faster application of the refinement modifications
since, for each modification, the sets S, Z, R and R′ are ready to be used. The resulting
storage cost for the cells in sets S, Z, R and R′ in the explicit data structure is equal to
4|SZRR′| bytes, where |SZRR′| indicates the number of cells in the union of the sets S,
Z, R and R′.

Implicit encoding
The nodes encoded in the implicit data structure represent cells in the sets S, Z, R
and R′ in an implicit manner referring to the DAG nodes introducing them or to the
coarse Incidence Graph if present in GB from the beginning. Intuitively, each node
in the Incidence Graph GU of a front complex ΓU , on which the refinement µ will be
performed, has been inserted in GU from another refinement µk or it was in the base
graph GB. To implicitly refer the cells introduced by another modification, in each node
µ a two-bit-flag vector pq-ancestors with the same size as ancestors is defined. Let
us consider the refinement µ = MiC(i + 1)C(q, p, p′) depending from a refinement
ancestors[j] = µ1 = MiC(i+ 1)C(q1, p1, p

′
1),

- pq-ancestors[j] = 0 if µ depends on cell p1 introduced by µ1

- pq-ancestors[j] = 1 if µ depends on cell q1 introduced by µ1

- pq-ancestors[j] = 2 if µ depends on both p1 and q1.

138

Thus, vector pq-ancestors[j] offers a compact way to refer cells introduced by other
nodes in the DAG. When the cells to refer correspond to nodes in the base graph GB,
four bitvectors are stored in DAG node µ. Let i, i + 1 be the dimension of cells p and q
introduced by µ = MiC(i+ 1)C(q, p, p′), respectively:

- bitvector BS has length equal to the number of (i+ 2)-nodes in GB;

- bitvector BZ has length equal to the number of (i− 1)-nodes in GB;

- bitvectors BR and BR′ have length equal to the number of (i+ 1)-nodes in GB.

For each bitvector (e.g. BS), the jth bit flag is equal to 1 if the jth (i − 2)-node of GB

is in S for modification µ. BZ , BR and BR′ are similarly defined. Vector pq-ancestors,
bitvectors BS , BZ , BR and BR′ , and array ancestor provide an implicit encoding of sets
S, Z, R and R′ required by modification µ. These latter sets are reconstructed when
applying the modification in the extraction phase.

The implicit data structure is built by starting from the Incidence Graph G of the cell
complex Γ at the finest resolution. A stack of simplifications is constructed iteratively by
applying the operators in a sequence. Once no more feasible simplifications are feasible,
the base graph GB at the coarsest resolution is stored in the root of the DAG. For each
element in the stack, a new node in the DAG is created, the type of the node is initialized
based on the type of the simplification operator. Also cells p and q removed by a simplifi-
cation as well as the pointer to the third cell p′ are encoded. Then, the following process
is repeated for all cells in sets S, Z, R and R′. For each cell p1, belonging to any of these
sets:

• if p1 belongs to GB, we set its corresponding bit in the bitvector (S, Z, R or R′) to
1;

• otherwise we store in ancestors a pointer to modification µ1 in the DAG that in-
troduces p1 and we insert in the corresponding position in pq-ancestors the value
0,1 or 2 depending on whether µ depends on first, second or both cells introduced
by µ.

The storage cost for each node in the implicit data structure depends on the number of cells
in sets S, Z, R and R′ and on the number of nodes in the base graph GB. Specifically, for
each DAG node, it requires:

• 1 bit for each node in NB, with a total cost of 1
8
|NB| bytes, where |NB| is the total

number of nodes of GB,

• 2 bits for each cell in S ∪Z ∪R∪R′, total cost 1
4
|SZRR′| byte, where |SZRR′| is

the cardinality of set S ∪ Z ∪R ∪R′.

Thus, to encode such information in the implicit data structure 1
8
(|GB|+2|SZRR′|) bytes

are required. Then, comparing the two storage costs, the implicit data structure is more

139

efficient in terms of memory requirements when, approximating the number of nodes in
the base graph, |GB| < 30|SZRR′|.

Experimental evaluations comparing explicit and implicit data structures have been devel-
oped for 2- and 3-dimensional cell complexes [Iur14]. The explicit data structure requires
20-30% more memory with respect to the implicit one in 2D, but differences are higher
in the 3D case, where the explicit data structure requires three times more memory than
the implicit structure. On the other hand, the direct access to the nodes in sets S, Z, R
and R′ for each modification µ speeds up the navigation inside the explicit data structure,
and thus we obtain lower extraction times.

An implementation of the HHCC, based on an implicit encoding, has been developed
in [ČomićDIF14]. by using a desktop computer with a 3.2Ghz processor and 16GB of
memory. All complexes are simplicial complexes, that become cell complexes after un-
dergoing some simplification.

The storage cost of theHHCC encoding structure is about 25% less than the storage cost
of the Incidence Graph representing the complex at full resolution (the original complex).
We have considered complexes with between 40K and 3.2M top cells in 2D case, and
between 700K and 6M top cells in the 3D case, as shown in Table 4.1 (columnCells). The
storage cost of the original cell complex is between 4.8MB and 398MB for 2D complexes,
and between 118MB and 980MB for 3D complexes (column Complex cost). The storage
cost of the corresponding HHCC is between 3.3MB and 273MB, and between 84MB
and 720MB (column HHCC cost), respectively.

Dataset Cells Complex HHCC Homology
cost (MB) cost (MB)

Genus3 40K 4.8 3.3 (1,6,1)
Fertility 1.4M 176 122 (1,8,1)
Hand 2.1M 256 177 (1,2,0)

Buddha 3.2M 398 273 (1,208,1)
Skull 748K 118 84 (1,2,1,0)

Fert-Solid 6.2M 980 720 (1,4,0,0)

Table 4.1: Four 2D shapes and two volumetric datasets used in our experiments. The
columns from left to right indicate: the name of the dataset (Dataset), the number of the
top cells in the datasets (Cells), the storage cost of the original cell complex (Complex
cost), the storage cost of the HHCC (HHCC cost), the Betti numbers (Homology).

4.3.3 Homology computation through an HHCC

An HHCC can be exploited for computing homology and homology generators of a cell
complex at various resolutions.

140

4.3.3.1 Computing homology and homology generators

In this subsection, we are interested in computing the homology groups Hk(Γ;Z2) of a
cell complex Γ with the coefficients in Z2. As described in [Hat02], this corresponds
to computing the Betti numbers of Γ with coefficients in Z2. Moreover, for each k =
0, . . . , d, we are interested in computing the homology generators of degree k, that we call
Hk generators. The Hk generators are the generators of the Z2-vector space Hk(Γ;Z2),
and they represent the independent non-bounding k-cycles in Γ. Each Hk generator of a
cell complex Γ is a linear combination of k-cells in Γ with coefficients in Z2. In Figure
4.10(a), two H1 generators are shown as linear combination of 1-cells. The first generator
is composed of the set of blue (bold) edges and the other one of the set of red (dotted)
edges.

In an HHCC, any front complex ΓU is obtained from the base complex ΓB by applying a
sequence of homology-preserving refinement modifications MiC(i+1)C. In an HHCC
thus, the homology of the base complex is the same as the homology of any other com-
plex implicitly encoded in theHHCC. We use the Smith Normal Form (SNF) reduction
algorithm (Subsection 1.2.1.3) to compute homology and homology generators with co-
efficients in Z2 on the base complex ΓB. Then, at each application of the refinement, we
modify the homology generators in the currently extracted front complex ΓU according
to Algorithm 5 and to Proposition 4.14 described below.

Proposition 4.14. Let Γ′ be a d-dimensional cell complex, Γ′′ the cell complex obtained
from Γ′ by applying MiC(i + 1)C(q, p, p′). For a fixed k ∈ {0, · · · , d}, let B′ =
{[c′1]′

Γ
, · · · , [c′l]′Γ} be a basis for Hk(Γ

′;Z2), then

1) if k 6= i+ 1, [c′1]
Γ′′
, · · · , [c′l]Γ′′ is a basis for Hk(Γ

′′;Z2);

2) if k = i + 1, B′′ = {[c′′1]
Γ′′
, · · · , [c′′l]Γ′′} is a basis for Hi+1(Γ′′;Z2), where, if

[c′]′
Γ
∈ B′, [c′′]

Γ′′
∈ B′′ is defined by

c′′ =

{
c′ if ∂

Γ′′
c′ ≡ 0 (mod 2)

c′ + q otherwise

Proof. See Appendix A.

As we have formally proven, the operation of a refinement modification MiC(i + 1)C
only affects the Hi+1 generators.
Let us consider refinement modification MiC(i + 1)Cex(q, p), which creates an i-cell p
and an (i+ 1)-cell q (the case of a refinement MiC(i+ 1)Cin is entirely dual). Operator
MiC(i + 1)Cex(q, p) is applied on a complex Γ′ producing a refined complex Γ′′. Algo-
rithm 5 checks if the introduced (i+ 1)-cell q in Γ′′ breaks an (i+ 1)-cycle corresponding
to an Hi+1 generator in Γ′. This is done by considering the number of (i + 1)-cells in
the coboundary of i-cell p that are involved in Hi+1 generators. This idea is illustrated in
Figures 4.10(b) and (c), where we show two different applications of operator M0C1Cex
to the same 2-complex (torus), depicted in Figure 4.10(a). The application of operator
M0C1Cex(q1, p1, p

′), illustrated in Figure 4.10(b), modifies one of the two H1 generators

141

in the torus. We can notice that the new 0-cell p1 has exactly one incident 1-cell belonging
to the blue (bold) 1-chain. Thus the 1-cycle has been broken by the refinement and 1-cell
q1 is added to the 1-chain to reconstruct the cycle. On the contrary, the application of op-
erator M0C1Cex(q2, p2, p

′), illustrated in Figure 4.10(c), does not affect the generators.
Note that 0-cell p2 has no incident 1-cell belonging to some H1 generator.

Algorithm 5 ExpandGenerators(p, q,Gi)

1: INPUT: p, i-cell
2: INPUT: q, (i+ 1)-cell
3: INPUT: Gi, set of Hi+1 generators
4: OUTPUT: Gi, set of Hi+1 updated generators
5: // C is a map from a generator g to an integer m
6: C := empty map
7: // Extract the (i+ 1)-cells on the coboundary of p
8: for all cofaces r of p do
9: // Gi,r is the set of generators containing r

10: Gi,r := getGeneratorsOn(r,Gi)
11: // Consider the number of incidences between p and r
12: for all generators g in Gi,r do
13: C[g] := getIncidence(p, r) + C[g]

14: // Expand the generators on q if necessary
15: for all pairs (g,m) in C do
16: if m is odd then
17: addGenerator(g, q,Gi)

In the description of Algorithm ExpandGenerators(p, q,Gi), p and q denote, respec-
tively, the i-cell and the (i + 1)-cell introduced by the refinement operator, and Gi rep-
resents the set of Hi+1 generators of Γ′. The algorithm makes use of a map C from a
generator g to an integer m, that, for each generator g, stores the number of (i + 1)-cells
in the coboundary of i-cell p which also belong to g.

Algorithm 5 uses the following three functions:

• getGeneratorsOn(r,Gi), which returns the set of generators Gi,r containing cell r
in their chain,

• getIncidence(p, r), which returns the number of times i-cell p appears on the
boundary of (i+ 1)-cell r,

• addToGenerator(g, q,Gi), which updates the generators in Gi by adding (i + 1)-
cell q to the (i+ 1)-chain corresponding to g.

Algorithm ExpandGenerators(p, q,Gi) considers only the (i+ 1)-cells in the cobound-
ary of p that are part of one or moreHi+1 generators. For each such (i+1)-cell r, Gi,r is the

142

set of generators that contain r (getGeneratorsOn(r,Gi)). For each generator g ∈ Gi,r,
map C is updated by adding the number of times the i-cell p appears on the boundary
of r (getIncidence(p, r)). Once all the (i + 1)-cells in the coboundary of p have been
examined, cell q is added to generator g only if the number m of incidences for g is odd
(addGenerator(g, q,Gi)).

(a) (b) (c)

Figure 4.10: (a) A cell complex representing a torus. Black dots represent 0-cells. Red
(dotted) and blue (bold) edges correspond to the two H1 generators. (b) Application of
operator M0C1Cex(q1, p1, p

′), which affects one of the homology generators. (c) Appli-
cation of operator M0C1Cex(q2, p2, p

′), which does not affect the homology generators.

By considering the used homology-preserving operators as compositions of the elemen-
tary operators introduced in [KMS98], the above presented method could be suitable ex-
tended to homology with coefficients in Z.

4.3.3.2 Homology computation and generator extraction: experimental results

Several experiment have been performed to check the efficiency of the proposed approach.
In a first set of experiments we have evaluated the time required to compute the homology
and its generators of the original complex (the one at full resolution) by using theHHCC.
To this aim, we first compute the homology generators on the base complex, encoded in
the root of the HHCC. This computation requires between 8.3 × 10−5 and 8.8 seconds
depending on the dataset (column SNF Time in Table 4.2). Then, we perform all the
refinements in the HHCC, by applying when necessary the refinement of the generators
as described in Subsection 4.3.3. This produces the representation of the complex at full
resolution together with the homology generators. The total cost of this computation is
the sum of the time required to compute the homology of the base complex (column SNF
Time) and the time needed to fully refine the complex and its generators (column Tot. Ref.
Time). This takes from a minimum of 0.15 to a maximum of 83.3 seconds. Applying
the same SNF reduction directly on the original complex, requires about 2.6 hours on a
relatively small complex (the dataset Genus3), while it results in very high computation
times for the other datasets.

In Figure 4.11, we show theH1 generators computed on two 2D shapes Fertility and Hand
and, in Figures 4.13 (b) and (c), we show the H1 and H2 generators computed on the 3D
Skull dataset.

In a second set of experiments we have focused on extracting different representations of

143

Dataset SNF Tot. Ref. Uniform Generators
Time Time Ref. Time Ref. Time

Genus3 9.2× 10−5s 0.15s
4K 0.03s

5K 0.03s10K 0.07s
16K 0.12s

Fertility 8.3× 10−5s 9.31s
144K 1.8s

68K 1.48s362K 4.6s
579K 7.52s

Hand 9.8× 10−5s 14.9s
200K 2.6s

19K 1.6s500K 6.8s
800K 11.2s

Buddha 0.02s 23.7s
320K 0.5s

162K 3.6s800K 4.3s
1.2M 19.2s

Skull 0.007s 6.4s
75K 1.0s

191K 2.6s187K 2.9s
299K 5.0s

Fert-Solid 8.8s 74.5s
1.2M 7.5s

267K 10.9s3.1M 29.1s
4.9M 69.3s

Table 4.2: Experimental results obtained by refining four 2D shapes and two volumet-
ric datasets and by computing homology generators on them through the Smith Normal
Form (SNF) reduction. The columns from left to right indicate: the name of the dataset
(Dataset), time required to compute the homology generators on the base complex (SNF
Time), the time needed to extract the complex at full resolution and to expand all the
generators (Tot Ref Time), the number of refinements and the time needed to extract the
complex and the geometry of the generators at uniform level of detail (Uniform Ref. and
Uniform Time) and the number of refinements and the time needed to extract the complex
and the generators concentrating the resolution only in the neighborhood of the generators
(Generators Ref.) and (Generators Time). The time is expressed in seconds.

the complex by expanding the computed generators at different resolutions. We have con-
sidered first the extraction of representations at uniform resolution: we have extracted rep-
resentations obtained from the base complex by applying approximatively 20%, 50% and
80% of the total possible refinements (column Uniform Ref. in Table 4.2).Refinements are
forced to be evenly distributed inside the complex in order to obtain a uniformly refined
complex. We can notice (see column Uniform Time) that the time required depends on
the number of refinements performed and is between 0.03 and 7.5 seconds for extraction
at 20% resolution and between 0.12 and 69.3 seconds for extraction at 80% resolution.

Then, we have extracted representations of the complexes varying the resolution inside
the domain. The objective has been to obtain a cell complex, and the corresponding
homology generators, with a maximum resolution only in a neighborhood of a specific
homology class. This corresponds to computing the Hi generators on the base complex
and, by traversing the HHCC, to performing only those refinements that create an i-

144

(a) (b)

Figure 4.11: The H1 generators computed on the Fertility dataset (a) and on the Hand
dataset (b) by fully refining the cell complex.

(a) (b)

Figure 4.12: TheH1 generators computed on the Fertility dataset and on the Hand dataset.
In (a) and (b) the generators obtained by refining the cell complex only in a neighborhood
of the generators.

(a) (b) (c) (d)

Figure 4.13: The H1 and H2 generators computed on the Skull dataset. In (a) the original
dataset, in (b) and (c) the H1 and H2 generators computed at full resolution and in (d)
the H1 generators extracted at variable resolution and visualized inside the extracted cell
complex.

145

cell belonging to some Hi generator (and the refinements on which they depend). This
kind of selective refinement produces cell complexes with a low number of cells outside
the area around the generators and thus leads to a further saving (15-30%) with respect
to extracting generators and complexes at maximum resolution. Note that the extraction
at variable resolution is a distinctive feature of the HHCC which cannot be performed
on other hierarchical models. Examples of variable resolution extractions are shown in
Figure 4.12 and in Figure 4.13 (d).

4.4 Simplicial homology computation through a multi-
resolution model

In this section, we define a multi-resolution model for simplicial complexes based on
the set of simplification and refinement operators introduced in Subsection 4.1.2. Then,
specializing the previous model, we describe a multi-resolution model for simplicial com-
plexes based on the subset of the proposed modeling operators which preserve homology
and we discuss about some possible implementations of this model. Finally, exploiting
the properties of the homology-preserving multi-resolution model, we propose an algo-
rithmic technique to efficiently extract homology and homology generators of a simplicial
complex at different resolutions.

4.4.1 The Hierarchical Simplicial Complex (HSC)

In this subsection, we introduce a hierarchy of simplicial complexes, that we call Hierar-
chical Simplicial Complex (HSC). An HSC is generated from a simplicial complex Σ,
considered at full resolution, by iteratively applying the elementary simplification opera-
tors, (elementary) excisions and edge contractions, introduced in Subsection 4.1.2.

Analogously to the general case described in Subsection 4.2.2 anHSC is formally a triple
(ΣB,M,R). The first component, ΣB, of the HSC is the coarse complex obtained at the
end of the simplification step and it is called base complex. The second component is the
setM of the refinement modifications which are the inverse operators with respect to the
simplifications that have produced ΣB from Σ. The third componentR is the dependency
relation between the modifications in the setM of all refinement modifications. As in the
previous cases, we consider, for simplicity, the creation of the coarse complex ΣB as a
dummy refinement modification that we denote as µ0.

Let us consider the modifying operators used to construct an HSC as a pair of graph
subsets (H1, H2), where Hi = (Ni, Ai) (see Subsection 4.2.1).
If µ is the excision excision(σ),

• N1 consists of the node corresponding to σ;

• A1 consists of the arcs representing the relation of immediate boundary of σ;

146

• the sets N2 and A2 are both empty.

If µ is the edge contraction contraction(u, v),

• N1 consists of the nodes corresponding to the cofaces of u;

• A1 is the set of arcs representing the relations of immediate boundary and cobound-
ary of the nodes in N1;

• N2 consists of the nodes corresponding to the cofaces of u having at least a vertex
v′ such that v′ 6∈ star v and in which vertex u has been replaced by v;

• A2 is the set of arcs representing the relations of immediate boundary and cobound-
ary of the nodes in N2.

In order to define the dependency relationR between the refinement modifications inM,
it is enough to notice that if the refinement µ is

• the inclusion inclusion(σ), the set Cµ consists of the simplices in the immediate
boundary of σ;

• the expansion expansion(σ, τ), the set Cµ consists of the simplices in the immedi-
ate boundary of σ and of τ except for the simplex σ;

• the vertex split split(u, v), the set Cµ consists of the simplices whose vertices are
in staru and in which vertex u has been replaced by v.

Thanks to the results presented in Subsection 4.2.3, the introduced model HSC is well-
defined and different selective refinements can be extracted from it. Similarly to the gen-
eral model MRCC and to the cellular model HCC, the performance of a sequence U
of refinement modifications operated in a consistent order and closed with respect to R
leads to the front complex ΣU representing Σ at a certain resolution level. This allows
to the HSC model to manage different refinement queries and to dynamically extract
representations of the original cell complex at uniform and variable resolutions.

Figure 4.14: An example of simplification process consisting of two elementary excisions
and an edge contraction.

An example of the HSC built from the simplification process illustrated in Figure 4.14 is
illustrated in Figure 4.15. The refinement µ0 creates the base complex ΣB at the coarsest
resolution. The refinement µ1 is the elementary inclusion of the simplex τ3, i.e., µ1 =
inclusion(τ3). For µ1, the set Cµ1 = {σ2, σ5, σ6}. The refinement µ2 is the vertex split
µ2 = split(v1, v4). For µ2, the setCµ2 = {v2, v4, σ4}. The refinement µ3 is the elementary

147

Figure 4.15: An example of HSC built from the simplification process illustrated in
Figure 4.14.

inclusion of the simplex τ1, i.e., µ3 = inclusion(τ1). For µ3, the set Cµ3 = {σ1, σ3, σ4}.
The refinements µ1 and µ2 are independent. The refinement µ3 depends on the refinement
µ2, since σ1, σ3 are in Cµ3 , and it does not depend on µ1. Each closed subset of refinement
modifications produces a different cell complex at intermediate resolution.

4.4.2 The Homology-preserving Hierarchical Simplicial Complex
(HHSC)

Analogously to the cellular case, our interest is to use the HSC as a tool to efficiently
retrieve homology of a simplicial complex at various levels of detail. In order to reach this
purpose, we define anHSC based only on homology-preserving simplicial operator. This
model, called Homology-preserving Hierarchical Simplicial Complex (HHSC), can be
built iteratively performing feasible homology-preserving simplifications on a simplicial
complex Σ. Specifically, from now on, the used operators are just reductions and edge
contractions satisfying the link condition.

An HHSC can be represented as a Direct Acyclic Graph (DAG). This DAG can be
iteratively built from the stack of the simplification operators performed on a simplicial
complex Σ up to obtain a simplicial complex ΣB called base complex. In each node of the
DAG, the information required to correctly perform the correspondent refinement mod-
ification µ has to be stored. A simple but space-consuming way to do it is by encoding
the two graph subsets H1, H2 completely characterizing µ. This solution is theoretically
valid but it will probably lead to a non practically implementable multi-resolution model.
Analogously to the cellular case (see Subsection 4.3.2), each node of the DAG could
be more efficiently stored by using an implicit encoding able to represent the required
information in a compact way. In order to further improve the spatial occupation of an
HHSC, we propose here an encoding based on the IA∗ data structure which has been

148

elected by experimental evaluations as one of the most compact data structures for sim-
plicial complexes (see Section 2.1 and Subsection 3.4.2).

Analogously to the previous cases, the encoding of anHHSC is achieved by representing
it by the Direct Acyclic Graph of the dependency relations of the refinement modifications
inM. In this case, the root of the DAG, representing the dummy refinement modifica-
tion µ0, stores the base complex ΣB by encoding it through the IA∗ data structure. Other
nodes of the DAG represent expansion and vertex split modifications and encode the re-
finements as well as their dependencies. By using the IA∗ data structure, this information
have to be expressed in terms of vertices and top simplices.

Let µ be a modification in M of the HHSC. Let us suppose that the operator µ−1,
performed during the simplification sequence generating the HHSC, has been applied to
the simplicial complex Σ′′ transforming it into the simplicial complex Σ′.
If µ = expansion(σ, τ), with dimσ = k, we store an ordered list of the vertices of τ in
which the vertices of σ are stored in the first k positions.

If µ = split(u, v), we store:

• vertices u and v;

• list Luv of the vertices in linkΣ′′ uv;

• list Lu− of the vertices in linkΣ′′ u \ linkΣ′′ uv;

• list T of the top simplices of Σ′ whose vertices are in Lu− ∪ Luv ∪ {v}.

Similarly to the cellular case, each node µ encodes also a label describing if µ is a expan-
sion or a vertex split modification, and arrays containing the pointers to the parents and
the children of µ.
Analogously to previous cases, the DAG can be iteratively built from the information,
saved in a stack, of a sequence of simplifications by adding one node at a time.

In order to check the validity of the proposed encoding, we have to prove that the infor-
mation stored for a modification µ allows retrieving set Cµ and performing the operator
µ.
If µ = expansion(σ, τ), the stored list of vertices allows retrieving σ, τ and the simplices
in their immediate boundary. The knowledge of these simplices allows immediately re-
trieving set Cµ and the information required to perform the operator µ.

If µ = split(u, v), the set Cµ (described in Subsection 4.4.1) consists of the faces of the
simplices in T .
According to Subsection 4.1.2, the information required to perform µ is:

• for each coface σ of v, i.e., σ = v v1 · · · vk, a list Lσ indicating which of the sim-
plices (eventually both) in {u v1 · · · vk, v v1 · · · vk}will substitute σ;

149

• the simplices which will form the star of edge uv.

Let σ = v v1 · · · vk be a coface of v. The list Lσ can be retrieved as follows:

• if vi ∈ Luv for each i, then Lσ = {u v1 · · · vk, v v1 · · · vk};

• if there exists at least one vertex vi ∈ Lu− , then Lσ = {u v1 · · · vk};

• otherwise, Lσ = {v v1 · · · vk}.

The star of edge uv consists of the simplices u v v1 · · · vk where v1 · · · vk is a simplex of
the simplicial complex on which µ is applied and each of its vertices vi belongs to Luv.

4.4.3 Homology computation through an HHSC

In this subsection, we present an approach for computing simplicial homology and ho-
mology generators at various resolutions using the version of the hierarchical model based
only on the homology-preserving operators.
Given a simplicial complex Σ and an HHSC of Σ, since any front complex ΣU is ob-
tained from the base complex ΣB by applying a sequence of homology-preserving refine-
ment modifications, the homology of all the complexes implicitly encoded in the HHSC
is the same. We use the Smith Normal Form (SNF) reduction algorithm [Mun84] to
compute homology and homology generators on the base complex ΣB. In order to re-
trieve the homology generators of a front complex ΣU , it is enough to understand how the
refinement modifications in U affect the homology generators of ΣB.
Without loss of generality, we can just describe how the homology generators change
after a single refinement modification. To do it, we need to consider refinement and
simplification modifications in terms of some elementary homology-preserving operators
introduced in [KMS98].

Let Γ be a cell complex and let σ, τ be two cells in Γ of dimension k, k + 1, respectively,
such that 〈∂τ, σ〉 is invertible, where 〈 , 〉 represents the scalar product between chains
in C∗(Γ). We define as elementary collapse 1 the homology-preserving operator that,
starting from C∗(Γ), builds a new chain complex D∗ by removing the two cells σ and τ
from C∗(Γ) and modifying the boundary ∂ν of a cell ν into ∂̃ν as follows.

∂̃ν =


∂ν − 〈∂ν,σ〉〈∂τ,σ〉∂τ if dim(ν) = k + 1

∂ν − 〈∂ν, τ〉τ if dim(ν) = k + 2

∂ν otherwise

Elementary reductions and edge contractions satisfying the link condition can be seen
in terms of elementary collapses: reduction(σ, τ) is just a specific instance of an el-
ementary collapse and contraction(u, v) , if the link condition holds, corresponds to

1In [KMS98], elementary collapses are called reductions. We do not use such a term in order to avoid
confusions.

150

the performance of the elementary collapses removing the pairs of cells (uσ, uvσ) with
σ ∈ linku ∩ link v and, at last, the pair (u, uv).
Let us denote the chain complex C∗(Γ) as C∗. If we know the homology generators of
chain complex D∗ obtained after an elementary collapse of pair (σ, τ), we are interested
in retrieving the homology generators of the original chain complex C∗. To reach this
purpose, we need to explicit formulas for the chain maps between C∗ and D∗ inducing an
isomorphism in homology.
Let ψ(σ,τ)

∗ : C∗ → D∗ , ι(σ,τ)
∗ : D∗ → C∗ be two chain maps defined by

ψ(σ,τ)(c) =


c− 〈c,σ〉

〈∂τ,σ〉∂τ if dim c = k

c − 〈c, τ〉τ if dim c = k + 1

c otherwise

ι(σ,τ)(c) =

{
c− 〈∂c,σ〉〈∂τ,σ〉τ if dim c = k + 1

c otherwise

The chain maps ψ(σ,τ)
∗ and ι(σ,τ)

∗ establish a homology equivalence between the chain com-
plexes C∗ and D∗ (see Theorem 2 in [KMS98]). Furthermore, since ψ(σ,τ)

∗ · ι(σ,τ)
∗ = idD∗ ,

the homology generators of C∗ can be retrieved by computing the generators of D∗ and
applying to them the map ι(σ,τ)

∗ .

The simplicial operators used to build the HHSC can be consider as compositions of
specific instances of elementary collapses. The above rules for retrieving the homology
generators of a refined complex knowing the generators of a coarse one can be used to suit-
ably modify the homology generators after a refinement modification µ and to correctly
expand the generators of the base complex ΣB up to any front complex ΣU encoded in
the HHSC.
According to the formula above, the performance of reduction(σ, τ), or of its inverse
expansion(σ, τ), does not affect the homology generators of a simplicial complex.
Let Σ′ be a simplicial complex, µ be the operator split(u, v) feasible on Σ′ and Σ′′ be
the simplicial complex obtained performing µ on Σ′. Suppose to know the set G of the
(geometric realizations of the) homology generators of Σ′, in which each generator is
expressed as the set of the simplices of which it consists. Algorithm 6 returns the set
of homology generators of Σ′′ by updating the generators in G according to the above
described formula.

Algorithm 6 makes use of a bitvector B, which describes if a generator g in G has been
updated in first step of the algorithm. Algorithm 6 uses the following functions:

• toBeModified(u, v), which returns the set Σ′u of the simplices of Σ′ that will be
modified by µ;

• getGeneratorsOn(σ,G), which returns the set Gσ of the generators containing the
simplex σ;

151

Algorithm 6 ExpandGenerators(u, v,G)

1: INPUT: u, v, vertices
2: INPUT: G, set of generators
3: OUTPUT: G, set of updated generators
4: // B is a bitvector of length |G|
5: B := null vector
6: // Σ′u is the set of simplices that will be modified by split(u, v)
7: Σ′u := toBeModified(u, v)

8: // Update the generators
9: for all simplices σ of Σ′u do

10: // Gσ is the set of generators containing σ
11: Gσ := getGeneratorsOn(σ,G)

12: // Update the generator containing σ
13: for all generators g in Gσ do
14: σ′ := simplex σ in which v is replaced by u
15: replaceInGenerator(g, σ, σ′,G)
16: B[g] := 1

17: // Expand the generators if necessary
18: for all generators g in G do
19: if B[g] = 1 then
20: // Bd is the set of simplices on the boundary of g
21: Bd := getBoundary(g)
22: for all simplices ρ in Bd do
23: if v ∈ ρ then
24: addToGenerator(g, uρ,G)

• replaceInGenerator(g, σ, σ′,G), which updates the generator g in G by replacing
in it the simplex σ with the simplex σ′;

• getBoundary(g), which returns the set Bd of the simplices ρ of Σ′′ such that, for
the generator g, 〈∂Σ′′g, ρ〉 6= 0;

• addToGenerator(g, σ,G), which updates the generator g in G by adding to it the
simplex σ.

Algorithm 6 considers the simplices of Σ′ that will be modified by the performance of µ
(toBeModified(u, v)). For each of these simplices, the algorithm retrieves the generators
containing it (getGeneratorsOn(σ,G)) and suitably modifies them (replaceInGenerator
(g, σ, σ′,G)). For each generator g updated in the first step of the algorithm, the boundary
of g is computed (getBoundary(g)) in order to check if g is still a cycle in Σ′′. If not, g is
updated by suitably adding some of the simplices newly created by µ (addToGenerator
(g, σ,G)).

152

4.5 Concluding remarks

In this chapter, we have combined the compactness and the expressive power of multi-
resolution models to quickly retrieve the homological information of cell and simplicial
complexes. First, various atomic modifying operators have been investigated. This study
has involved both homology-preserving and homology-modifying operators and it has led
to the definition of two complete bases of operators in terms of which any cellular and,
respectively, simplicial modification can be represented. Then, we have proposed the def-
inition of a general multi-resolution model and specialized it for cellular and simplicial
cases. For cellular complexes, a homology-preserving hierarchical cell complex has been
implemented and used to efficiently extract the homology generators at any level of detail.
Experimental evaluations have been performed revealing the efficiency and the compact-
ness of the proposed approach. Since the promising results obtained, a hierarchical model
dealing with the homology at different resolutions of a simplicial complex has been pro-
posed.

Further developments of our work will mainly involve the simplicial case. In partic-
ular, we plan to design and develop an efficient and compact implementation of the
homology-preserving multi-resolution model for simplicial complexes based on reduc-
tions and homology-preserving edge contractions introduced in Section 4.4. In order
to obtain a model with a compact storage cost, we plan to work with a data structure
encoding only the top simplices and the vertices of a simplicial complex Σ, such as the
Generalized Indexed data structure with Adjacencies (IA∗) [CDW11] and the Stellar Tree
[Fel15]. The difficulty here is to have an efficient tool to perform homology-preserving
edge contractions to generate the sequence of simplifications which are the first step in
generating the multi-resolution model.

When implementing a homology-preserving edge contraction, we have to check the link
condition and update the data structure. The former is the most challenging task when
working on a data structure based on top simplices: it requires the extraction of the links
of the edge involved in the simplification and its two vertices. Thus, we have to represent
all the simplices, and this is an operation than becomes extremely costly when work-
ing in high dimensions. On the other hand, updating the data structure has a contained
complexity. We need to remove the top simplices incident in the edge removed (oper-
ation performed efficiently by both IA∗ data structure the Stellar Tree) and we need to
introduce the top simplices possibly created (always less or equal to the number of top
simplices eliminated). The key point of this step is that it only involves top simplices and,
thus, it is well suited for such data structures.

Similarly to the homology-preserving multi-resolution model for a cell complex defined
in Section 4.3, we are confident that the HHSC could actually lead to interesting re-
sults. First at all, we want to perform experimental evaluations in order to compare the
storage cost of the encoding of an HHSC with the storage cost required to encode the
corresponding simplicial complex at full resolution. Second, we anticipate that the time
required to compute the homology of the base complex and to fully refine the complex
and its generators could be much better with respect to the time needed for executing
the SNF reduction on the original simplicial complex Σ. Moreover, we believe that the

153

computation of homology generators of the original simplicial complex Σ can be further
improved by expanding them not up to the full resolution simplicial complex but just
reaching the simplicial complex in the HHSC having maximum resolution only in the
vicinity of the homology generators.

154

Chapter 5

Topologically-consistent Simplification
of Discrete Morse Complexes

A fundamental issue when working with real data is the presence of noise. Using Morse
theory as a tool for studying these data, the resulting oversegmentations produced require
a device to eliminate uninteresting features. Multi-resolution models are then defined to
provide domain experts with an interactive tool for the exploration of such data. At the
base of the definition of a multi-resolution model stands the definition of a simplification
algorithm, used for building the model.

As mentioned in Subsection 2.4.4, in Morse theory the morphological simplification of
a dataset is driven by an operator called cancellation. Cancellation removes two critical
points connected by a unique separatrix line through local modifications of the integral
lines originating and converging in the two points [Mat02]. Two different approaches
have been defined for applying such operator on real data. The first approach is based
on modifications of the Morse Incidence Graph (MIG), i.e., a graph representation of
the connectivity of the critical points [EHZ01]. The geometry of the Morse complexes is
explicitly stored in the representation, attached to the graph nodes. For this reason, this
approach is also known as explicit. Removing two critical points corresponds to deleting
two nodes of the graph and merging the attached entities.

The second approach is based on discrete Morse theory [For98] (see Subsection 1.3.3).
The Forman gradient is used here as a discrete counterpart of the gradient of a smooth
function f . In this context, the integral lines and the critical points of f are represented
as gradient paths and critical simplices, respectively. From a gradient vector field, the
Morse cells can be computed navigating the gradient paths and, thus, they do not need to
be stored explicitly.
Alongside with the notion of critical point and Morse complex also the cancellation oper-
ator has been defined in this combinatorial framework. Applying the cancellation opera-
tor on a Forman gradient corresponds to eliminating a pair of critical simplices connected
by a unique separatrix V -path and changing the direction of the gradient arrows along the
path between them. This update implicitly modifies the Morse cells accordingly. Thus,
this approach is also know as implicit.

155

Simplifications performed by using the explicit method are generally faster thanks to the
graph-based representation, and thus preferable when high performances are required. On
the other hand, the implicit method avoids the extraction of the Morse cells and is prefer-
able when compactness is more relevant. However, even if the two methods are equivalent
in the two dimensional case, the implicit representation may present inconsistencies when
working in higher dimensions. The origin of the problem, described in [GRSW13] for 3D
scalar fields, is ascribed to the structure of the discrete gradient pairs along the paths con-
necting 1-saddles to 2-saddles. This makes the implicit approach useless in practice when
simplifying volumetric data.

Different multi-resolution models have been defined in the literature based on an explicit
simplification sequence [GKK+12, ČDI12]. The resulting models have been proven to
be efficient for interactively modifying and visualizing Morse cells but they are lack-
ing in compactness. In this direction, the Forman gradient would be a perfect candidate
for defining a compact multi-resolution model but, due to the inconsistency problem de-
scribed in [GRSW13], no such models have been yet defined for volumetric data.

We consider here the problem of defining a simplification algorithm for the implicit
method based on an efficient graph-based representation and free from the topologi-
cally inconsistencies that affect the standard implicit method. Our approach is described
and implemented for 3-dimensional simplicial complexes, but it is entirely dimension-
independent. Thus, the major contributions are:

1. the definition of a compact data structure for the efficient simplification of a Forman
gradient;

2. a method for removing gradient paths causing topological inconsistencies;

3. an algorithm combining the two previous contributions to perform a topologically-
consistent simplification of a discrete Morse complex.

Specifically, in Section 5.1, we consider the problem of representing a discrete Morse
complex by presenting the two representations used in the literature and by introducing a
new efficient and compact data structure. Section 5.2 describes the cancellation operator
in terms of gradient-based and graph-based representations and points out the inconsisten-
cies between the two approaches. Section 5.3 is devoted to solve this problem. The goal
is reached thanks to a disambiguation algorithm able to clean up the gradient from paths
causing inconsistencies and thanks to the use of a simplification operator, called remove,
whose performance does not introduce any bad configuration in the gradient. In Section
5.4, the proposed data structure and the disambiguation algorithm are combined together
in order to obtain a topologically-consistent simplification algorithm. Furthermore, ex-
perimental results obtained from an implementation of the just introduced algorithm are
presented and discussed. Finally, in Section 5.5, we summarize our contributions and
we focus on some immediate improvements in persistent homology computation and in
expressiveness of a multi-resolution model that the proposed simplification process pro-
duces. Moreover, we discuss about the development of a geometric simplification algo-
rithm and about the definition of a multi-resolution model combing morphological and

156

geometrical simplifying operators.

The contributions of this Chapter has been collected in [IFD15]. This paper has been
presented at the conference Shape Modeling International (SMI) 2015 and awarded with
an honorable mention.

5.1 Representing discrete Morse complexes

Two kinds of representation are used for Morse complexes: a graph-based representation
[ELZ02, BEHP04, GKK+12], which explicitly encodes the cells of the Morse complexes
and their topological relations, and one based on the encoding of the Forman gradient,
which represents such relations implicitly [GRWH12, GRSW13]. In this section, we mo-
tivate why the implicit representation is preferable when aiming at a compact data struc-
ture for simplifying Morse complexes. Moreover, we propose a new compact graph-based
representation coupling the efficiency of the explicit graph-based representation and the
compactness of gradient-based one.

Gradient-based representation
The standard gradient-based representation encodes the arrows defining a Forman gradi-
ent field V on a cell complex Γ. Since a Forman gradient field is a collection of pairs of
cells on Γ, we need a representation for Γ, in which all cells and their mutual incidence
relations are explicitly encoded, as in the Incidence Graph (IG) [Ede87] (see Section
2.1). The Forman gradient V can be implemented in a straightforward way on an IG as a
Boolean function associated with the arcs of the IG. For a regular grid, the arcs of the IG
are encoded implicitly by indexing the cells of the complex. Moreover, since V defines
a pairing between incident cells, V is encoded as a bitvector based on the same indexing
[GRWH12].

For simplicial complexes, compact representations such as the IA∗ data structure
[CDW11] and the Stellar Tree [Fel15] are characterized by an explicit encoding of the
vertices and the top simplices. In such data structures, immediate boundary and cobound-
ary relations are not explicitly stored. So, a different encoding of the Forman gradient
is required. As discussed in Subsection 3.2.1, a dimension-independent encoding for the
Forman gradient, which associates the gradient pairs with the top simplices, has been de-
fined [FID14]. It represents a generalization to arbitrary dimensions of the ones proposed
for 2- and 3-dimensional simplicial complexes [FlDFW14, WIFD13]. This encoding as-
sociates with each top simplex σ of a simplicial complex Σ a bitvector representing all
the possible pairings on the boundary of σ. All the gradient pairs inside each top sim-
plex can be represented in a very compact way, e.g., one byte for triangle for a simplicial
2-complex or two bytes for tetrahedron for a simplicial 3-complex.

Graph-based representation
The graph representation is the so-called Morse Incidence Graph (MIG). As described

157

in Subsection 2.4.3.2, an MIG is a weighted graph G = (N,E, µ) in which:

• the set of nodes N is partitioned into d+ 1 subsets N0, N1, . . . , Nd;

• each node in Nk, denoted as the set of k-nodes, represents both a k-cells of the
descending complex ΣD and a (d− k)-cells of the ascending complex ΣA;

• each arc in E, connecting a k-node σ to a (k + 1)-node τ , represents the incidence
relation between the Morse cells corresponding to σ and τ ;

• the label µ(τ, σ) of an arc (τ, σ) coincides with the multiplicity of the incidences
between k-cell σ and (k + 1)-cell τ .

The MIG is an incidence-based representation of the two Morse complexes and provides
also a combinatorial representation of the 1-skeleton of the Morse-Smale complex. In the
applications, attributes are attached to the nodes in N storing the geometric information
associated with the Morse cells. In Figure 5.1, an example of a 2D MIG is shown,
representing the combinatorial structure of the 1-skeleton of the MS complex depicted in
Figure 5.2(b).

Figure 5.1: The MIG computed on the terrain dataset shown in Figure 5.2(b). The nodes
of the graph are the maxima (red nodes), saddles (green nodes) and minima (blue nodes)
of the scalar field function. Arcs (black lines) connect two nodes if there exist a separa-
trix line connecting the corresponding critical points. Nodes corresponding to maxima are
enhanced with the geometrical representation of the corresponding descending 2-cells (re-
lation depicted with red lines) while minima nodes refer to the ascending 2-cells (relation
depicted with blue lines).

In [GKK+12], an extended MIG has been defined storing the cells of both the ascending
and descending Morse complexes explicitly. Given a d-dimensional simplicial complex
Σ endowed with a gradient vector field V , let us consider the subset of the simplices in Σ
belonging to the cells of either the ascending Morse complex ΣA or the descending one
ΣD. Let σ be such a simplex of dimension k. The extended MIG associates with σ a
label indicating the (d− k)-cells of ΣA and the k-cells in ΣD which σ belongs to. If Σ is
represented by a data structure explicitly encoding all its simplices, this labeling is easy
to be stored.
A different strategy has to be developed for compact data structures encoding only the

158

vertices and top simplices of Σ, such as the Generalized Indexed data structure with Ad-
jacencies (IA∗) [CDW11] (see Section 2.1). In this framework, in order to associate
with a simplex a label indicating the corresponding cells in the ascending and descending
Morse complexes, a compact representation of any simplex σ of Σ is required. This can
be achieved by representing the simplex σ as a pair (t, bv) where t is the index of a top
simplex τ containing σ and bv is a bitvector of length dim τ + 1 representing the vertices
of τ spanning σ.
Independently from the chosen data structure, the extendedMIG can be used for fast ren-
dering of Morse cells during a simplification or a refinement process [GKK+12]. How-
ever, computing and storing all the Morse cells during simplification leads to inefficiencies
in terms of storage.

Discrete Morse Incidence Graph
To overcome the lack of compactness affecting the graph-based representations proposed
in the literature, we have defined a Discrete Morse Incidence Graph (DMIG) combining
theMIG with the compact representation provided by the Forman gradient V . This latter
differs from the extended MIG by the geometric attributes attached to the graph nodes.
Using the compact representation provided by V , we associate with each node n in Nk

the corresponding critical k-simplex σ in V instead of the entire geometrical embedding
for the Morse cell corresponding to σ. If we consider the case of 3-dimensional simplicial
complexes encoded in a compact data structure, like the IA∗ data structure, implicitly
representing the geometrical embedding with the critical simplices requires only one in-
teger for each critical maximum or minimum, corresponding to a tetrahedron and a vertex
respectively, and two integers for each 1- and 2-saddle (corresponding to triangles and
edges, respectively, where triangles are represented as pairs of tetrahedra and edges as
pairs of vertices).

Dataset |Σ0| |Σ3| #C MIG
DMIG

DMIG
Gradient.

SHOCKWAVE 2M 12M 3.2K 6.9x 1.001x
BONSAI 4.2M 24.4M 0.8M 27.6x 1.17x
VISMALE 4.6M 26.5M 1.2M 28.6x 1.12x
FOOT 5.0M 29.5M 1.98M 30.1x 1.24x

Table 5.1: Evaluation on 3-dimensional simplicial complexes of the storage costs using
the DMIG compared to the extended MIG and the Forman gradient. For each dataset,
we indicate the number of vertices and tetrahedra (columns Σ0 and Σ3), the number of
critical simplices (#C) and the compression factor of the DMIG with respect to the
MIG and the Forman gradient.

In Table 5.1, we compare, for 3-dimensional simplicial complexes, the storage cost of the
DMIG with respect to the storage cost of the extended MIG, as described above, and
versus the space required by just encoding the Forman gradient. The DMIG results to
be 7 to 30 times more compact than the extended MIG and its size is always comparable
with that of the direct encoding of the Forman gradient.

159

5.2 Simplifying discrete Morse complexes

Morphological simplification of scalar fields [ELZ02, GNP+05] is a powerful tool known
in the literature for removing insignificant features while preserving relevant parts of the
data (see Figure 5.2). For a detailed discussion please refer to [Iur14].

(a) (b) (c)

Figure 5.2: A Forman gradient defined on a simplicial complex (a) and the 1-skeleton
of its Morse-Smale complex (b). Effects of topological simplification performed on the
1-skeleton of the Morse-Smale complex (c). Note that function values (height values of
the terrain) are not modified by the topological simplification; the simplified 1-skeleton
represents the two main peaks and the pit only.

As mentioned in Subsection 2.4.4, an operator (called cancellation) has been defined
in the literature for removing pairs of critical points [Mat02]. The discrete counterpart
of this operator has been introduced in [For98] and allows for the elimination of a pair
of critical simplices. The effects of cancellation operator can be described in terms of
gradient-based or graph-based representations. In this section, we describe this operators
for both the implicit and explicit representations indicating where the two approaches
present inconsistencies.

Gradient-based cancellation
Let Σ be a simplicial complex endowed with a Forman gradient V . Given two critical sim-
plices τ and σ of Σ, with dimension k+1 and k respectively, (σ, τ) is a valid cancellation
pair for (Σ, V) if µ(τ, σ) = 1 i.e., if the two simplices are connected through a unique
separatrix V -path. Under such assumption, k-cancellation(σ, τ) is the operator which
removes the critical simplices σ and τ , reversing the gradient arrows along the unique sep-
aratrix V -path from σ to τ . More precisely, if [τ, (σ1, τ1), (σ2, τ2), . . . , (σr, τr), σ] is a sep-
aratrix V -path, a new V -path on Σ is created as [(σ, τr), (σr, τr−1), . . . , (σ2, τ1), (σ1, τ)].
The Forman gradient V ′ obtained in this way is still a Forman gradient on Σ with the
same critical simplices with the exception of σ and τ .

Figure 5.3 shows the effect of 1-cancellation(σ, τ) on a Forman gradient V defined on
a 2-dimensional simplicial complex Σ: σ is a critical edge and τ and τ ′ are two critical
triangles. Starting from σ, the separatrix V -path, connecting τ to σ, is reversed. As a
consequence, τ and σ are not critical. The two separatrix V -paths, connecting τ to α1

and α2, are extended with the reversed V -path, and now connect τ ′ to α1 and α2. The
two separatrix V -paths starting from σ and reaching ρ1 and ρ2 become non-separatrix
V -paths.

160

Figure 5.3: Effect of the 1-cancellation(σ, τ) on a Forman gradient V defined on a 2-
dimensional simplicial complex, The original V (left side) has two critical triangles τ and
τ ′ (in red) and one critical edge σ (in green). Red arrows indicate the V -path involved in
the simplification.

Graph-based cancellation
As for the Forman gradient, also the Morse Incidence Graph (MIG) can be simplified by
means of the cancellation operator. We consider an MIG G = (N,E, µ), and a pair of
nodes τ and σ in N of dimension k + 1 and k, respectively, connected through an arc in
E. We denote as A = {αi, i = 1, . . . , imax} the k-nodes of the MIG different from σ and
connected to node τ , and as B = {βj, j = 1, . . . , jmax} the (k + 1)-nodes of the MIG
different from τ and connected to the node σ.

Figure 5.4: Example of a 1-cancellation(σ, τ) operator. Red dots correspond to maxima,
purple dots to 2-saddles, green dots to 1-saddles. Dotted lines corresponds to the arcs of
the MIG.

A cancellation pair (σ, τ) is feasible on an MIGG if µ(τ, σ) = 1. Its effect is as follows
(see Figure 5.4):

• delete nodes τ and σ,

• delete all arcs incident in either node τ or node σ,

• introduce an arc (βj, αi) for each αi ∈ A and each βj ∈ B (if such arc does not
already exist),

• set µ(βj, αi) = µ(βj, σ)µ(τ, αi) + µ(βj, αi).

161

Topological inconsistencies
As investigated in [GRSW13], the simplification of the same pair of critical simplices
performed on an MIG and on the corresponding Forman gradient may give different
results on the connectivity of the critical simplices when working in three dimensions or
higher.

(a) (b) (c)

Figure 5.5: Morse Incidence Graph (a) and Forman gradient (b) before and after the 1-
cancellation(σ, τ) operator and (c) MIG computed from the Forman gradient. Green
edges denote 1-saddles and purple triangles denote 2-saddles. In (b), simplices forming
the V -paths are depicted with green (edges) and purple (triangles) dots. Arrows between
two dots indicate a gradient pair, while a straight line between two dots indicates the
incidence relation between the corresponding simplices.

We illustrate this problem by using the example in Figure 5.5. Recall that the weighted
arcs in the MIG are in correspondence with the separatrix V -paths in the Forman gra-
dient. Figure 5.5(a) shows a cancellation applied to delete 1-saddle σ and 2-saddle τ
on the MIG. As a result of the cancellation, all the arcs connected to either σ or τ
are deleted, and the new arcs introduced connect nodes which were previously connected
with σ and τ . In Figure 5.5(b), the same configuration is depicted on a Forman gradi-
ent showing the separatrix V -paths between the critical simplices connected to σ and τ .
When performing the same cancellation as before, the arrows in the separatrix V -path
between σ and τ are swapped. As a consequence, following the gradient arrows outgoing
from the remaining 2-saddles (purple triangles), the new separatrix V -paths will end at
the two 1-saddles (green edges), on the left, only. The MIG configuration extracted from
the original Forman gradient and the one simplified are shown in Figure 5.5(c).

We can observe that this situation occurs each time a cancellation involves a separatrix
V -path originating from different critical simplices and converging to different critical
simplices, which merge and split in a common V -path, that we call a shared V -path.
More precisely, a V -path π is called a shared V - path if it is contained in at least two
separatrix V -paths π′, between τ ′ and σ′, and π′′, between τ ′′ and σ′′, such that τ ′ 6= τ ′′

and σ′ 6= σ′′.

162

5.3 Solving topological inconsistencies

The aim of this section is to provide a solution to the inconsistency problem caused by
cancellation operators performed on different representations of a discrete Morse com-
plex.
Our solution is based on a preprocessing step, able to free the gradient vector field from
shared V -paths, and on a new simplification operator, called remove, preventing the gen-
eration of gradient configurations leading to inconsistencies.

5.3.1 Shared V-paths and the remove operator

A Cancellation produces the removal of two Morse cells, both in the ascending and de-
scending Morse complexes, as well as the local modifications of the incidence relations
between the remaining Morse cells. In spite of this, a cancellation may increase the in-
cidence relations among such cells when applied on a complex in dimension higher than
two.
Let us considered, for instance, the 1-cancellation(σ, τ) of a 1-saddle and a 2-saddle
operated on a 3-dimensional Morse complex. As described in the previous section, the
effect of 1-cancellation(σ, τ) on a graph-based representation consists of deleting nodes
σ and τ , as well as all the arcs incident in nodes σ and τ , and adding one arc for each pair
(βj, αi) where α belongs to A and βj belongs to B. Thus, the 1-cancellation operator
deletes two nodes from N , but possibly increasing the number of arcs connecting 1-nodes
to 2-nodes in the graph by deleting |A | + |B | + 1 of such arcs, but adding |A | · |B |
of them. Thus, it is not a simplification operator, since it does not reduce the size of the
graph. In [GKK+12], this issue has been discussed at length, since it can cause computa-
tional problems and, more importantly, make the application of k-cancellation operator
unfeasible on large-scale data sets. Several strategies are proposed in [GKK+12], which
aim at postponing an k-cancellation that would introduce a number of arcs greater than
a predefined threshold, or vertices with valence greater than a predefined threshold.
Another solution proposed to overcome this issue make use of the remove operators. A
remove modification, denoted as k-remove(σ, τ), is a dimension-independent simplifi-
cation operator firstly introduced in [ČomićD11]. Unlike cancellation, the remove op-
erator always reduces the size of a graph-based representation of the Morse complex.
For k = 0 or k = d − 1, k-remove(σ, τ) is equivalent to k-cancellation(σ, τ). When
1 < k < d− 1, k-remove(σ, τ) operator can be consider as a cancellation with stronger
feasibility conditions.

A k-remove(σ, τ) collapses a k-saddle σ and a (k + 1)-saddle τ , that are connected
through a unique separatrix V -path, if there is at most one k-saddle, different from σ,
connected with τ or, at most one (k + 1)-saddle, different from τ , connected with σ.
Because of the similarity between a k-remove(σ, τ) and a k-cancellation(σ, τ), we can
describe the effects of a k-remove(σ, τ) on the MIG as a k-cancellation(σ, τ) in which
A ≤ 1 or # B ≤ 1 (see Section 5.2). Its effect in terms of updates on the Forman
gradient or on the MIG are the same as the cancellation operator.

163

Figure 5.6: Examples of a 1-remove(σ, τ) operator. Red points correspond to maxima,
purple points to 2-saddles, green points to 1-saddles. Dotted lines corresponds to the arcs
of the MIG.

When the feasibility conditions are not satisfied, i.e., when # A > 1 and # B > 1, a
suitable sequence of extremum-saddle operators is performed to obtain a valid configura-
tion for k-remove(σ, τ). Such sequence of simplifications forms a macro-operator. As
an example, we consider the macro-operator which collapses a 2-saddle τ and a 1-saddle
σ into another 2-saddle τ ′ (see Figure 5.6). For all the 2-saddles βj connected to σ and
different from τ and τ ′, a 2-remove involving βj is performed. When τ and τ ′ are the
only 2-saddles connected to σ, the 1-remove(σ, τ) is performed.

remove operator is still affected by the problems of inconsistencies arising when per-
forming the graph-based or the gradient-based simplification. However, it guarantees a
fundamental property that makes k-remove(σ, τ) the first ingredient for our simplifica-
tion algorithm: a k-remove(σ, τ) never introduces shared V -paths in V .

Proposition 5.1. Let Σ be a simplicial complex endowed with a Forman gradient V ,
which does not contain any shared V -path. Let (σ, τ) be a valid cancellation pair for
(Σ, V), let V ′ be the Forman gradient obtained from V by applying k-cancellation(σ, τ).
Then, V ′ does not contain any shared V -path if and only if k-cancellation(σ, τ) is a
feasible k-remove(σ, τ) for (Σ, V).

Proof. “ ⇐ ”. Let us assume that k-remove(σ, τ) is feasible for (Σ, V). By hypothesis,
V has no shared V -path. Thus, any shared V -path in V ′ should be contained in one of the
separatrix V -paths newly created by k-remove(σ, τ). Since k-remove(σ, τ) is feasible
for (Σ, V), at least one of the sets A and B has cardinality equal to one, so no shared
V -path can be created in V ′.

An example of this is shown in Figure 5.7. Since 1-remove(σ, τ) is feasible, at most one
simplex α1 of the same dimension of τ is connected to σ. Thus, the new created V -paths
cannot be shared V -paths since they will have a common origin (i.e., α1).

“ ⇒ ”. Assume that k-cancellation(σ, τ) is not a feasible k-remove(σ, τ) for (Σ, V).
Let us call π the separatrix V -path [τ = τ0, (σ1, τ1), (σ2, τ2), . . . , (σr, τr), σr+1 = σ]. Let
σl be the first simplex of π which belongs to a separatrix V -path between βj ∈ B and

164

Figure 5.7: 1-remove(σ, τ) operator not introducing any shared V -path.

σ. Dually, let τm be the last simplex of π which belongs to a separatrix V -path between
αi ∈ A and τ . Since V has no shared V -path, m < l and each newly created separatrix
V -path between βj and αi will contain the V -path π′ = [(σl, τl−1), . . . , (σm+1, τm)]. Since
both # A and # B are greater than 1, π′ is a shared V -path for (Σ, V ′).

Conversely to the example shown in Figure 5.7, the configuration depicted in Figure 5.8 is
not valid for 1-remove(σ, τ) since multiple 2-saddles are connected with σ (i.e. α1,α2 and
α3). As a result of applying 1-cancellation(σ, τ) we introduce a shared V -path, depicted
in red, created overlapping the new V -paths having different origin and destination.

Figure 5.8: 1-cancellation(σ, τ) operator introducing a shared V -path.

5.3.2 Shared V-path disambiguation algorithm

In this subsection, we propose a preprocessing step aimed to untie the shared V -paths
in a simplicial complex Σ endowed with a Forman gradient V . We describe here such
algorithm for the case of 3-dimensional simplicial complexes, but it can be extended to
simplicial complexes of arbitrary dimension as well.
The idea at the basis of the shared V -path disambiguation algorithm is to modify the sepa-
ratrix V -paths between 1-saddles and 2-saddles, inserting, by the performance of the undo
of a cancellation, new dummy critical simplices in such a way that all the separatrix V -
paths sharing the same path will end (or start) at the same critical saddle. When looking
at the separatrix V -paths connecting maxima with 2-saddles and minima with 1-saddles,
this property is guaranteed by construction, i.e., V -paths starting from a maximum can

165

only split, while V -paths reaching a minimum can only merge.

Figure 5.9 illustrates the key ideas of the algorithm. The traversal starts from critical edge
σ and continues visiting the triangles in the separatrix V -path by navigating the arrows
in reverse order. At triangle τ1, three separatrix V -paths split, then the triangle is identi-
fied as part of the shared path. Continuing the traversal, on edge σ1 different separatrix
V -paths merge. Thus, σ1 is identified as the beginning of the shared path, and τ1 and σ1

are introduced as critical (see Figure 5.9(b)).

(a) (b)

Figure 5.9: Shared V -path identified (a) and disambiguated inserting dummy critical sim-
plices σ1 and τ1 (b).

Algorithm 7 and Algorithm 8 show the pseudocode description of the shared V -path dis-
ambiguation process. They are based on the following functions and procedures:

• startingPaths(σ, V) returns the simplices different to the one paired with σ (if it
exists), belonging to a separatrix V -path and on the immediate coboundary of σ;

• countSplittingSeparatrix(τi, V) counts the number of separatrix V -paths outgo-
ing from the simplices in the immediate boundary of τi;

• adjacentPaired(τi, V) returns the simplices different to τi, belonging to a sepa-
ratrix V -path and on the immediate coboundary of the simplex with which τi is
paired;

• V.getPair(τi) returns the simplex paired in V with τi;

• reversePath(σi, τi, V,A) declares as critical the simplices σi and τi and updates V
by reversing the gradient path between them.

Algorithm 7 describes the algorithm for disambiguation of V -paths. Starting from a crit-
ical edge σ, the separatrix V -paths converging in it are considered (lines 2-4). For each
separatrix V -path, the first triangle incident into σ and belonging to the path is pushed
onto a stack S (lines 4-6). While S is not empty, the first triangle τi is popped from
the stack and the number of separatrix V -paths outgoing from its boundary edges are
computed (function countSplittingSeparatrix(τi, V)). If there are multiple separatrix
V -paths that split at τi (see τ1 in Figure 5.9(a)), the visit of a shared path begins (line 11).

166

Algorithm 7 IdentifySharedPath(V,A)

1: INPUT: V , gradient vector field; A, set of critical simplices
2: for all critical edges σ in A do
3: F := startingPaths(σ, V)
4: for all triangles τi in F do
5: Stack S := ∅
6: S.push(τi)
7: while S ! = ∅ do
8: τi := S.pop()
9: nSplit := countSplittingSeparatrix(τi, V)

10: if nSplit > 1 then
11: visitSharedPath(τi, V,A)
12:
13: F := adjacentPaired(τi, V)
14: for all triangles τj in F do
15: S.push(τj)

Algorithm 8 V isitSharedPath(τi, V,A)

1: INPUT: τi is a triangle
2: INPUT: V , gradient vector field; A, set of critical simplices
3: σi := V.getPair(τi)
4: F := startingPaths(σi, V)
5: if #F = 1 then
6: τj := F
7: nSplit := countSplittingSeparatrix(τj, V)
8: if nSplit > 1 then
9: // if a new splitting face is found τi is updated

10: τi := τj
11: return visitSharedPath(τj, V,A)
12: if #F > 1 then
13: reversePath(σi, τi, V,A)

Algorithm 8 describes the traversal of a shared V -path. Starting from the triangle τi on
which the shared V -path splits, the edge σi, paired with it, is extracted (line 3). Function
startingPaths(σi, V) returns the set F of triangles different from τi and incident in σi
that are in some separatrix V -path (line 4). If F has cardinality equal to one, we are still
visiting the shared V -path (line 5). Otherwise, if the cardinality of F is greater than one,
we are on an edge σi on which multiple separatrix V -paths are collapsing (see σ1 in Figure
5.9(a)). If this is the case, τi and σi are introduced as dummy critical simplices and the
arrows between them are reversed (lines 12-13). If #F was zero, we ended into a single
critical triangle, thus we were not on a real shared V -path and no critical simplices are
introduced. Note that, during the visit of a shared V -path, triangle τi can be updated if
another triangle, closer to τi, is found on which separatrix V -paths split (lines 7-10).

167

Algorithm 8 visits the simplices of the shared V -path it identifies by performing constant
time operations. Then, it reverses the visited shared V -path. This latter procedure and,
consequently, Algorithm 8 have a linear time complexity in the number of simplices in
the identified shared V -path.
Algorithm 7, instead, visits all the separatrix V -paths once for each 1-saddle. Thus, it has
a worst-case time complexity of O(s1 · sV), where s1 is the number of 1-saddles and sV
the number of simplices forming the separatrix V -paths.

Once all shared V -paths have been identified and disambiguated, we perform a simplifi-
cation step for removing all the dummy critical simplices. Since the insertion of a pair of
critical simplices (σ,τ) can be seen as the undo of a cancellation, performing cancella-
tions would restore the initial inconsistency situations in the complex. Thus, we use only
remove operators that will trigger macro-operators working on extremum-saddle pairs.

Dummy critical simplices and obstructions
Obstructions are critical point configurations that cannot be simplified either using a
cancellation or a remove operator. Specifically an obstruction is a pair of critical points,
of consecutive index connected by multiple paths. The presence of obstructions can lead
to degenerate configurations, called fingers, that cannot be simplified. Such configurations
typically do not appear in the initial state of the dataset but arise, with the undergoing of
simplifications, in flat areas [GDN+07]. Even if flat areas are not allowed, when com-
puting a Forman gradient with the algorithm described in [RWS11], obstructions are still
present in the data since they describe the natural behavior of the field.

Let us consider the shared V -paths. When the obstruction is present inside a shared V -
path, the introduction of a dummy critical simplex can be avoided (since any simplifica-
tion passing by that part will be unfeasible). When obstructions involve critical simplices
in the neighborhood, there is a degenerate configuration that could prevent the removal
of the dummy critical simplices. We show such configuration in Figure 5.10. The 2-
saddles (purple triangles) and the 1-saddles (green edges) are all connected with extrema
(maxima and minima, respectively) through multiple paths. Thus, the macro-operator
cannot remove the two dummy critical simplices since none of the 2- or 1-saddles in the
neighborhood can be removed. However, it is still important to introduce the pair since
otherwise, the shared V -path could be affected by a swap during the simplification algo-
rithm. Note that if this is the case, it means that the dummy pair will be removed in the
future.

Dummy critical simplices that have not been removed during the simplification process
can be removed at the end, with a cancellation, avoiding the visualization of spurious
cells.

Even if this can be seen as a degenerate problem that could bring to uncontrolled re-
sults, we have noticed that the introduction of a dummy pair never inhibits the application
of other remove operators. In other words, we can always assume that the number of
remove operators, preserving the shared V -paths, which can be applied on a Forman gra-
dient V without a dummy pair, is always less or equal to the number of remove operators

168

Figure 5.10: Example of obstructions preventing the removal of a dummy critical pair.
Red tetrahedra correspond to maxima, purple triangles to 2-saddles, green edges are 1-
saddles and blue spheres correspond to minima. Red, purple, green and blue dots corre-
spond to (non critical) tetrahedra, triangles, edges and vertices, respectively. The white
triangle and edge are the dummy critical simplices.

which can be applied on V after the insertion of the dummy pair. This is important to
guarantee that the simplification is never obstructed by our disambiguation method.

5.4 Experimental results

The compact data structure introduced in Section 5.1 and the process described in Sub-
section 5.3.2 to untie shared V -paths have been exploited to define a new topologically-
consistent algorithm for the morphological simplification of a discrete Morse complex. In
order to obtain such a result, we have combined the shared V -path disambiguation algo-
rithm with a simplification algorithm based on the remove operator. We discuss here the
results obtained when simplifying real datasets. Experiments have been performed on a
desktop computer with a 3.2Ghz processor and 16GB of memory. The datasets chosen for
our experiments are originated from regularly distributed data. The 3-dimensional sim-
plicial complexes are obtained by removing points (and tetrahedra) corresponding to the
empty space and removing flat areas (adjacent vertices with the same field value) through
edge contractions.

We use a Discrete Morse Incidence Graph (DMIG) (see Section 5.1) for representing
the pairs of critical simplices connected by a separatrix V -path. remove operators are
applied in ascending order of persistence using a priority queue. At each step, the sim-
plification with the lowest persistence value is performed, the gradient arrows along the
path are updated as well as the DMIG, and the new available simplifications are in-
serted in the priority queue. Once the queue is empty, or all the valid simplifications have
a persistence value higher than a user defined threshold, the simplification algorithm ends.

We have studied the preprocessing step by evaluating its impact on the overall compu-

169

Dataset Size |Σ0| |Σ3| #C
Preprocessing Simplification Mem. Peak

#Cins Time Rem Time (GB)

BUCKY 323 32K 0.17M 2K 156 2.4 sec 1K 6.39 sec 0.09
FUEL 643 13K 0.06M 2.7K 54 0.65 sec 1.3K 4.13 sec 0.05
SILICIUM 98x34x34 66K 0.36M 2.1K 290 1.6 sec 1K 17.5 sec 0.1
NEGHIP 643 0.12M 0.64M 12.6K 234 10.7 sec 6.3K 3.8 min 0.2
SHOCKWAVE 64x64x512 1.2M 7M 1.1K 55 20.1 sec 582 2.8 min 2.4
BLUNT 256x128x64 1.0M 6M 11.2K 1378 10.4 min 5.5K 22.2 min 1.9
HYDROGEN 1283 0.6M 3.9M 15.1K 2133 24.1 min 7.5K 24.3 min 2.2

Table 5.2: Evaluation of the preprocessing step and the remove-based simplification. For
each dataset we indicate, the original size and the number of vertices, tetrahedra and
critical points (columns Size, |Σ0|, |Σ3| and #C, respectively) in the tetrahedral mesh.
In column Preprocessing, we show the number of critical points introduced during the
preprocessing step and the timings for: identifying the shared V -paths, insert the critical
points and remove them. Column Simplification shows the total number of simplifications
performed and the time required by the algorithm. Column Mem. Peak indicates the
maximum amount of memory used.

Figure 5.11: Nodes deleted by the remove-based (columns on the right) and the
cancellation-based (columns on the left) algorithms using different simplification errors.

tation. In Table 5.2, we present the results obtained. We can notice that the number of
critical simplices artificially introduced (column #Cins) varies depending on the dataset
and is between 2-13% of the total number of critical simplices and all of them are removed
during this phase. The timings of the preprocessing algorithms can be relevant with re-
spect to the whole simplification process and, in a worst-case scenario (HYDROGEN),
the time required for identifying and disambiguating shared V -paths and removing the
dummy critical simplices is equal to the time required for simplifying the entire complex.
The complexity of the preprocessing step depends on the number of separatrix V -paths
between saddles and on their size, i.e., on the number of simplices forming them. In
Figure 5.12, we show the results obtained by simplifying FUEL, BUCKY, NEGHIP and
HYDROGEN 3-dimensional simplicial complexes. For HYDROGEN dataset, we can no-
tice that shared V -paths are quite numerous and spread around the entire complex, unlike
what happens with FUEL, BUCKY and NEGHIP.

170

(a) (b) (c) (d)

Figure 5.12: Topologically-consistent simplification of the FUEL, BUCKY, NEGHIP and
HYDROGEN. The original scalar field (a) and the shared paths depicted in red (b). The
original 1-skeleton of the MS complex (c) and its simplified version (d) computed with
a persistence threshold of 0.01% with respect to the maximum persistence for FUEL, 0.2
for BUCKY and HYDROGEN and 0.3% for NEGHIP.

We have also studied the remove operations triggered by the macro-operators during the
removal of the dummy critical simplices. Specifically, we focus on studying the persis-
tence associated with the deleted nodes in order to ensure that interesting features were
not deleted during the preprocessing step. As discussed in [GRSW13], there is a cor-
relation between noise and shared V -paths. We have found that 98% of the removals
applied during the preprocessing step delete nodes that would be removed by the classical
algorithm using a persistence threshold lower than 0.01% of the maximum persistence.
Nodes in the remaining 2% have a persistence lower than 0.1% of the maximum persis-
tence. Typically, values of persistence lower than 0.2% of the maximum persistence are
considered noise.

171

Studying the entire simplification algorithm, we have verified experimentally the correct-
ness of our approach comparing the graph updated during the simplification process and
the one extracted from the simplified Forman gradient after each simplification step.

Moreover, we have compared our remove-based simplification algorithm with a standard
cancellation-based algorithm testing whether the number of critical simplices in the fully
simplified Forman gradient are comparable. The graph depicted in Figure 5.11 shows
the number of critical simplices deleted using different simplification errors. For each
dataset, the column on the right indicates the results obtained with the remove-based
algorithm, while the results obtained with the cancellation-based algorithm are shown in
the columns on the left. As we can notice, the number of critical simplices removed is
comparable in both approaches. This result guarantees that the simplification sequence
obtained using the remove operator removes features in a controlled and progressive way,
as the cancellation-based method.

5.5 Concluding remarks

We have presented a new simplification algorithm for a discrete Morse gradient that guar-
antees the topological consistency of Morse and Morse-Smale complexes generated from
the simplification. Fundamental steps of the proposed algorithm are the shared V -path
disambiguation process and the use of the remove operator. The first one allows freeing
the gradient from all the configurations leading to inconsistencies, the second one to sim-
plify the discrete Morse complex in a topologically-consistent way. We have proved the
correctness of our approach, and we have evaluated experimentally its performances with
respect to a classical cancellation-based approach. Another contribution of our work is
the introduction of a new graph-based data structure representing Morse complexes based
on the Morse Incidence Graph (MIG). This structure has been obtained by removing
almost all the geometric attributes associated with each node of the MIG. Experimental
evaluations have revealed that this data structure allows to encode a Morse complex effi-
ciently with a minimum loss in storage cost.

The simplification algorithm proposed in this chapter can lead to immediate improve-
ments in various application domains. We focus here on two of them on which we plan to
work in the immediate future. The first one concerns persistent homology computation,
the second one is related to the expressive power of a multi-resolution model for a Morse
complex.

As described in Subsection 2.3.3.4 and further developed in Chapter 3, discrete Morse
theory can be exploited to efficiently retrieve standard and persistent homology of a sim-
plicial complex. In this context, discrete Morse theory allows us to reach two goals: a
time improvement in the computation of homological information, and the retrieval of a
compact but homologically equivalent representation of the input simplicial complex.
Differently to the standard homology, persistent homology is not a topological invariant

172

and it strongly depends on the filtration considered to analyze the complex. In some sit-
uations, for instance, when the Forman gradient is built starting from a noisy function
defined on the vertices of the considered complex, this dependency leads to the construc-
tion of a oversize discrete Morse complex and consequently to the retrieval of groups of
persistent homology affected by noise. In a similar situation, noise can be easily detected
and removed once the persistent homology is computed but, by adopting this strategy,
the algorithm retrieving persistent homology has to deal with a large-size complex and its
execution can require too much time. In order to speed up the computation of a noise-free
persistent homology, a simplification step can be useful. Let us suppose to have computed
for a simplicial complex a filtered Forman gradient. Instead of directly compute persis-
tent homology of the associated Morse complex and then denoise the obtained result, we
propose of remove the redundant critical simplices that will likely cause noise by per-
forming a simplification preprocessing on the filtered Forman gradient before to compute
persistent homology. Since a simplification process is much less time-consuming than the
algorithm to retrieve persistent homology groups, the time required for the entire compu-
tation of a noise-free persistent homology decreases by adopting this strategy.

As widely discuss in Chapter 4, a multi-resolution model permits to obtain different repre-
sentations of any spatial object at different levels of detail. The level of detail can be uni-
form or vary other the object. In [BEHP04] and [BPH05], two different multi-resolution
models have been defined for representing the cells of the Morse complexes computed on
a terrain. In [GKK+12] a similar model has been defined for volumetric datasets while in
[ČDI12] it has been defined for simplicial meshes embedded in nD. Aside from the work-
ing dimension, all these models are built by applying a sequence of simplifications on a
graph-based representation of the Morse complexes. The coarsest graph obtained is then
stored in combination with the set of refinements, undo of the simplifications performed.
The dependency relation for a refinement operator can be seen as the set of nodes/arcs
that have to be in the graph for the operator to be successfully applied. The definition of
a weak dependency relation (i.e., a dependency relation involving less nodes as possible)
is crucial for a multi-resolution model since it augments its adaptivity.

From an application point of view, the compactness of the Forman gradient would make
it a perfect candidate for representing the Morse cells in a multi-resolution framework. In
this case, the base complex would be the coarse Forman gradient (i.e., the gradient with
the minimum number of critical simplices) obtained through a sequence of simplifications
applied to the initial Forman gradient, while the set of refinement operators would rein-
troduce pairs of critical simplices.
Following this approach, however, the dependency relation is defined in terms of critical
simplices, present in the Forman gradient, and of their connections. Unfortunately, the
undecidability introduced by the shared V -paths forces us to check those properties on
the fly, navigating the Forman gradient. The resulting loss of efficiency would clearly
make the model useless for an interactive experience.
The method we have proposed for disambiguating the shared V -paths solves this prob-
lem. Removing the uncertainty behind each simplification, allows us to define a multi-
resolution model that is efficient since free of the local checks at runtime. Moreover, we
believe that the implicit approach used in combination with a remove operator and with

173

a Forman gradient free of the shared V -paths, let us to define the weakest dependency
relation ever defined for these kinds of models that results in the multi-resolution model
with a high expressive power.

In our plans, the proposed simplification algorithm is a first step in the definition of a tool
able to represent a discrete Morse complex at different levels of detail. More precisely,
we plan to develop a multi-resolution model for discrete Morse complex combining both
geometrical and morphological modifications. This goal has been achieved in the context
of 2-dimensional simplicial complex leading to the definition of a multi-resolution model
for triangulated scalar field [ID14].

As discuss above, the resolution of the inconsistency problem addressed in [GRSW13]
leads to a good management of the morphological modifications and to an increase of
the expressive power of a multi-resolution model. Aside from formally proving the va-
lidity of the weak dependency relation above defined, the next steps required to reach
our purpose are the development of a geometrical simplification algorithm for simplicial
complexes endowed with a gradient vector field, and the definition and the design of a
multi-resolution model based on geometrical and morphological simplification operators.

Simplification algorithms for discrete Morse complexes proposed in the literature reduce
the size of such a complex only from a morphological point of view. Actually, they are
based on simplification operators removing pairs of critical simplices while the underlying
simplicial complex remains unchanged. In order to obtain a multi-resolution model with a
wider expressive power, the possibility of simplifying discrete Morse complex also from
a geometrical point of view is required. Our task is to simplify the underlying geometrical
structure of a complex by reducing its size through homology-preserving operators while
we maintain not only the homology but also the Forman gradient. Analogously to [ID14],
we want to consider the edge contraction as simplifying operator.

Once that simplification operators able to handle the geometry of a discrete Morse com-
plex without affecting the gradient behavior will be defined, we plan to combine them with
morphology-modifying operators in order to design and implement a multi-resolution
model for discrete Morse complexes based on both these kinds of modifications.
This model will be a tool on which both geometric and morphological simplifications
can operate concurrently to reduce the complexity and to enhance the understanding of
available volume datasets.

174

Chapter 6

Relations between Perfect Discrete
Morse Functions and Betti Splittings

The main goal of the work developed in this chapter is to establish a first connection
between the notions of perfect discrete Morse function and Betti splitting by exploiting
the link between commutative algebra and algebraic topology provided by the Stanley-
Reisner correspondence [Rei76, Sta75].

Thanks to this correspondence and to Hochster’s formula [Hoc77], the homology groups
of a simplicial complex can be related to some algebraic invariants obtained through the
computation of the minimal graded free resolution of a suitable monomial ideal. For an
ideal I , the existence of a particular decomposition, called Betti splitting, ensures that the
minimal graded free resolution of I can be recovered from the resolutions of the ideals in
which it has been decomposed.
Specifically, our task is to correlate the good property for a simplicial complex of admit-
ting a perfect Morse function with the desirable property for a monomial ideal of admit-
ting a splitting. The literature ensures us that there exist examples of simplicial complexes
on which no perfect Morse function can be defined but whose associated ideal admits a
Betti splitting [Bol15, LB13]. For this reason, in this chapter we focus on finding out
under which assumptions admitting a perfect discrete Morse function implies admitting
also a homological or a Betti splitting.

The chapter is organized as follow. Section 6.1 is devoted to introduce various background
notions useful for the rest of the chapter, such as the Stanley-Reisner correspondence, the
definition of Betti and homological splitting and the property of perfection for a discrete
Morse function.
Then, Section 6.2 and Section 6.3 aim to present the two main contributions of this chap-
ter. In both the cases, it has been proven that for a simplicial complex with non null
top homology, admitting a perfect discrete Morse function ensures that the correspondent
ideal can be suitable split. In Section 6.2, we prove that under the conditions mentioned
above a homological splitting can be retrieved. In Section 6.3, instead, we describe which
further hypotheses have to be added in order to obtain a Betti splitting. The first result

175

can be actually used as an algorithmic criterion to verify that a simplicial complex does
not admit a perfect discrete Morse function, while the second one represents a first in-
teresting connection between discrete Morse theory and the relevant algebraic notion of
Betti splitting. Both the results have been first introduced in a general context in which
some technical hypotheses are required. Then, by exploiting the Poincaré duality, they
have been specialized in the more familiar context of the orientable manifolds. Another
interesting fact is that all the proposed proofs are constructive. So, the knowledge of a
perfect discrete Morse function allows us to actually build the desired splitting.
Moreover, the proven results ensure the existence of a Betti splitting for the wide class
of the 2-manifolds. Finally, in Section 6.4, we discuss about the obtained results and we
give an overview of the open questions and of the goals we would like to achieve in the
near future.
Currently, a paper summarizing the results presented in this chapter is in progress
[BFRDon].

6.1 Background

In this section, we provide some basic notions in combinatorics, algebra and topology
useful for the rest.

Simplicial complexes and squarefree monomial ideals
Recall that an abstract simplicial complex Σ on V is a collection of finite subsets of V ,
called simplices, such that if τ ∈ Σ, σ ⊆ τ , then σ ∈ Σ. Since the two notions of simpli-
cial complex and abstract simplicial complex are equivalent, in the following, when this
does not create any ambiguity, we omit the term "abstract".

In the following, we always consider abstract simplicial complexes on n := {1, . . . , n},we
denote as < σ1, . . . , σr > the (abstract) simplicial complex generated (by inclusion clo-
sure) by the top simplices σ1, . . . , σr, and we declare the empty set ∅ as a simplex of
dimension -1 of any considered simplicial complex. A subset σ ⊆ n such that σ 6∈ Σ is
called a nonface of Σ. We denote by N(Σ) the set of minimal (with respect to inclusion)
nonfaces of Σ.

Given an (abstract) simplicial complex Σ on n and a field F, we can associate with Σ two
different monomial squarefree ideals in the polynomial ring R = F[x1, . . . , xn].

Definition 6.1. The Stanley-Reisner ideal of Σ in R is

IΣ = (xσ |σ ∈ N(Σ))

where xσ =
∏

i∈σ xi.

Remark 6.2. (Stanley-Reisner correspondence, [MS05]). The function described in
Definition 6.1 mapping a simplicial complex into a squarefree monomial ideal constitutes
a bijection from the set of abstract simplicial complexes on n to the set of squarefree
monomial ideals in R = F[x1, . . . , xn].

176

(a) (b)

Figure 6.1: A simplicial complex Σ (a) and its Alexander dual Σ∗ (b).

In order to define the second ideal associated with Σ, we need to associate with Σ another
simplicial complex.

Definition 6.3. The Alexander dual of Σ is the simplicial complex defined as

Σ∗ =< n \ σ |σ ∈ N(Σ) >

Definition 6.4. The Alexander dual ideal of Σ in R is the Stanley-Reisner ideal IΣ∗ of
Σ∗.

In the following, we denote the ideal IΣ∗ as I∗Σ.

Example 6.5. Let Σ be the simplicial complex on 5 = {1, . . . , 5} defined as < 123, 124,
134, 235, 245, 345 > and depicted in Figure 6.1 (a).
According to the above definitions,

• the Stanley-Reisner ideal of Σ in R is IΣ = (x1x5, x2x3x4);

• the Alexander dual of Σ is the simplicial complex Σ∗ =< 15, 234 > depicted in
Figure 6.1 (b);

• the Alexander dual ideal of Σ in R is I∗Σ = (x1x2, x1x3, x1x4, x2x5, x3x5, x4x5).

Let F be a field, R = F[x1, . . . , xn] be the polynomial ring on n variables and M =
(x1, . . . , xn) its maximal homogeneous ideal. Let R be with the standard grading and
M ,N finitely generated graded R-module. A homogeneous homomorphism φ : M → N
of graded R-modules of degree d is a homomorphism such that φ(Mi) ⊆ Ni+d for each
i ∈ N. Given a integer r, denote byM(r) the shiftedR-module whose graded components
are given by M(r)i := Mr+i.

Definition 6.6. Let M be a finitely generated graded R-module. A minimal graded free
resolution of M as R-module is a free resolution of M of the form

0→ Fp
φp−→ · · · φ2−→ F1

φ1−→ F0
φ0−→M → 0

where Fi =
⊕

j∈NR(−j)βi,j(M) are shifted free modules, φi are homogeneous of degree
0 and Im(φi) ⊆MFi−1 for each integer i.

177

A minimal graded free resolution of a finitely generated graded R-module M always ex-
ists and it is unique up to isomorphism of chain complexes [Eis13]. Adjective "minimal"
denotes that the number of basis elements of each shifted free module Fi is minimal. The
invariants βi,j(M) = dimF(Fi)j are called graded Betti numbers of M . We denote as
βi(M) =

∑
j∈N βi,j(M) the ith total Betti number of M .

The projective dimension of an R-module M , denoted as pd(M), measures the length
of the minimal graded free resolution of M as R-module and it is given by pd(M) =
sup{i ∈ N | βi,j(M) 6= 0 for some j ∈ N}. One of the most important general results
about resolutions is given by Hilbert’s syzygies.

Theorem 6.7. (Hilbert’s syzygies Theorem, [Hil90]). Let M be a graded R-module.
Then, pd(M) ≤ n.

Example 6.8. Let us consider the Alexander dual ideal I∗Σ in R of the simplicial complex
Σ considered in Example 6.5. So, I∗Σ is the ideal (x1x2, x1x3, x1x4, x2x5, x3x5, x4x5). A
minimal graded free resolution of I∗Σ is

0→ R(−5)→ R(−4)5 → R(−3)9 → R(−2)6 → I∗Σ → 0

From it, the graded Betti numbers of I∗Σ can be easily retrieved, e.g., β0,2(I∗Σ) = 6. Further,
pd(I∗Σ) = 3 and, according to Theorem 6.7, it is less than 5.

In [Hoc77], M. Hochster proved a remarkable formula that is the main bridge between
combinatorics and commutative algebra allowing to establish a relation between the ho-
mology of a simplicial complex and the Betti numbers of its associated ideals. The version
of Hochster’s formula that we introduce is due to Eagon and Reiner [ER98].

Theorem 6.9. (Hochster’s formula, graded version, [ER98]). Let Σ be a simplicial
complex on n. Then,

βi,j(I
∗
Σ) =

∑
σ∈Σ,#σ=n−j

β̃i−1(linkΣ σ;F)

where, for each k, β̃k represents the kth Betti number of reduced homology [MS05].

Remark 6.10. As mentioned above, Hochster’s formula allows to link explicitly the ho-
mology of a simplicial complex Σ with the graded Betti numbers of I∗Σ. By imposing
j = n, we obtain βi,n(I∗Σ) = β̃i−1(Σ;F) which is equivalent to β0(Σ;F) = β1,n(I∗Σ) + 1
and βk(Σ;F) = βk+1,n(I∗Σ) for k > 0.

Example 6.11. The just mentioned relation allows retrieving, for instance, the Betti num-
bers of the simplicial complex Σ introduced in Example 6.5 from the minimal graded free
resolution of I∗Σ described in Example 6.8. In this case, we obtain

βk(Σ;F) =


β1,5(I∗Σ) + 1 = 1 if k = 0

β2,5(I∗Σ) = 0 if k = 1

β3,5(I∗Σ) = 1 if k = 2

βk+1,5(I∗Σ) = 0 if k ≥ 3

178

Homological and Betti splittings
For studying the graded Betti numbers of a monomial ideal I , it is natural to split I into
smaller monomial ideals J , K where I = J + K trying to recover βi,j(I) from βi,j(J),
βi,j(K) and βi−1,j(J ∩K).

Given a monomial ideal in R, we denote as G(I) the minimal system of monomial gen-
erators of I .

Definition 6.12. Let I , J and K be monomial ideals such that I = J + K and G(I) is
the disjoint union of G(J) and G(K). Then, J + K is a Betti splitting of I with respect
to F if, for all i, j ∈ N,

βi,j(I) = βi,j(J) + βi,j(K) + βi−1,j(J ∩K)

Example 6.13. Let us consider as I the ideal (x1x2, x1x3, x1x4, x2x5, x3x5, x4x5). A
minimal graded free resolution of I has been showed in Example 6.8. Let J = (x4x5),
K = (x1x2, x1x3, x1x4, x2x5, x3x5) be two ideals such that I = J + K and G(I) is the
disjoint union of G(J) and G(K).
Minimal graded free resolutions of J , K and J ∩K are, respectively,

0→ R(−2) → J → 0

0→ R(−4)2 → R(−3)6 → R(−2)5 → K → 0 (6.13.1)

0→ R(−5) → R(−4)3 → R(−3)3 → J ∩K → 0

Then, it is easy to check that J +K is a Betti splitting of I .

By using the Stanley-Reisner correspondence (Remark 6.2) and the Alexander duality
(Definition 6.3), we can state the above condition for a simplicial complex Σ. First at all,
we need the analogous of the request that two minimal systems of generators are disjoint.

Definition 6.14. Let Σ be a simplicial complex. Consider a partition of the set of its
top simplices in two disjoint subsets T1 and T2. Let Σ1 =< τ | τ ∈ T1 > and Σ2 =<
τ | τ ∈ T2 > be the two simplicial complexes generated by the simplices in T1 and T2,
respectively.
We call the decomposition Σ = Σ1 ∪ Σ2 a standard decomposition of Σ.

Here, the analogous for a simplicial complex Σ of the notion of Betti splitting introduced
in Definition 6.12.

Definition 6.15. Let Σ = Σ1 ∪ Σ2 be a standard decomposition of a simplicial complex
Σ. We call the decomposition Σ = Σ1 ∪ Σ2 a Betti splitting of Σ with respect to F if
I∗Σ = I∗Σ1

+ I∗Σ2
is a Betti splitting of I∗Σ with respect to F.

It is possible to express the Betti splitting condition for the Alexander dual ideal I∗Σ of
a simplicial complex Σ directly on the complex, introducing the notion of homological
splitting.

179

Definition 6.16. ([Bol15], Definition 5.7). Let Σ = Σ1∪Σ2 be a standard decomposition
of a simplicial complex Σ. We say that Σ = Σ1 ∪ Σ2 is a homological splitting of Σ with
respect to F if the following conditions are satisfied.

β0(Σ;F) =

{
β0(Σ1;F) + β0(Σ2;F) if Σ1 ∩ Σ2 = ∅
β0(Σ1;F) + β0(Σ2;F)− 1 otherwise

β1(Σ;F) =

{
β1(Σ1;F) + β1(Σ2;F) if Σ1 ∩ Σ2 = ∅
β1(Σ1;F) + β1(Σ2;F) + β0(Σ1 ∩ Σ2;F)− 1 otherwise

βk(Σ;F) = βk(Σ1;F) + βk(Σ2;F) + βk−1(Σ1 ∩ Σ2;F) for k > 1

By Hochster’s formula (Theorem 6.9 and Remark 6.10), we can consider a homological
splitting as a Betti splitting in degree n. So, if Σ = Σ1 ∪ Σ2 is a Betti splitting of Σ,
then Σ = Σ1 ∪ Σ2 is a homological splitting of Σ. In general, the converse does not hold
([Bol15], Example 5.8).

Example 6.17. Let us consider the simplicial complex Σ =< 123, 124, 134, 235, 245,
345 > depicted in Figure 6.1 (a). Let Σ1, Σ2 be the simplicial complexes < 123 >
and < 124, 134, 235, 245, 345 >, respectively. Σ1 ∪ Σ2 is a standard decomposition of
Σ. Moreover, since ideals I∗Σ, I∗Σ1

and I∗Σ2
coincide respectively with ideals I , J and K

considered in Example 6.13, equation (6.13.1) ensures that Σ1 ∪ Σ2 is a Betti splitting
(and so, also a homological splitting) of Σ.

The following theorem describes how admitting a Betti splitting can be characterized in
terms of homological splittings.

Theorem 6.18. ([Bol15], Theorem 5.14). Let Σ = Σ1∪Σ2 be a standard decomposition
of a simplicial complex Σ. Then, the following statements are equivalent:

• Σ = Σ1 ∪ Σ2 is a Betti splitting of Σ with respect to F;

• linkΣ σ = linkΣ1 σ∪ linkΣ2 σ is a homological splitting with respect to F of linkΣ σ,
for each σ ∈ Σ1 ∩ Σ2.

Perfect discrete Morse functions
According to the definition provided in Subsection 1.3.3, a discrete Morse function f
on a simplicial complex Σ is an increasing function with respect to the dimension of
the simplices which, for each k-simplex, admits at most one exception to the rule above
among the simplices of dimension k − 1, or among the simplices of dimension k + 1.
Simplices of dimension k which do not admit any exception are called critical k-simplices
of f . Let us denote as Ck(f) the set of the critical k-simplices of f .

Theorem 6.19. (Weak Morse inequality, [For98]). Let Σ be a simplicial complex and
let f be a discrete Morse function defined on it. Then, for each k and each field F,

βk(Σ;F) ≤ Ck(f)

180

Definition 6.20. If the discrete Morse function f is such that, for each k, βk(Σ;F) =
Ck(f), f is said perfect with respect to F.

Figure 6.2: An acyclic matching defined on a simplicial complex and inducing a perfect
discrete Morse function.

Example 6.21. The simplicial complex Σ triangulating a sphere depicted in Figure 6.1
(a) can be easily endowed with a perfect discrete Morse function. For instance, the acyclic
matching on Σ depicted in Figure 6.2 induces a perfect discrete Morse function having as
critical simplices the edge 123 and the vertex 5.

Example 6.22. Each collapsible simplicial complex Σ (i.e., Σ can be simplified to a single
point space by using elementary reductions) admits a perfect Morse function. Moreover,
a simplicial complex Σ is collapsible if and only if Σ admits a discrete Morse function
with exactly one critical simplex.

Topological and combinatorial manifolds
Intuitively, a manifold is a topological space which locally behaves like an Euclidean
space. Manifolds form an important class of topological spaces with applications in sev-
eral mathematical fields. Here, we focus our attention on topological manifolds but, in
general, a manifold can be equipped with other additional structures, such as a differen-
tiable structure. More details about the topics of this section can be found in [Hud69,
BR03].

Definition 6.23. A topological space X is called locally homeomorphic to Ed if every
point x ∈ X has a neighbourhood which is homeomorphic to the d-dimensional Euclidean
space Ed.

Definition 6.24. A (topological) d-manifold M is a Hausdorff space that is locally home-
omorphic to the d-dimensional Euclidean space Ed.
A (topological) d-manifold with boundary M is a Hausdorff space in which every point
has a neighbourhood homeomorphic to the d-dimensional Euclidean space Ed or to the
d-dimensional Euclidean half-space Hd :=

{
x ∈ Rd | xd ≥ 0

}
.

Remark 6.25. Since any metric space is a Hausdorff space, for a d-manifold M which is
a subset of an Euclidean space, the request that M is a Hausdorff space is superfluous.

181

For simplicial complexes, the notion of manifold can be described in a more combinatorial
way. To do that, we need a tool which can locally describe the behavior of a simplicial
complex by representing a neighbourhood for each simplex of Σ.

Definition 6.26. A simplicial d-complex Σ is a combinatorial d-manifold [with bound-
ary] if the link of every vertex is homeomorphic [either] to the (d − 1)-sphere Sd−1 :={
x ∈ Rd | d2(x, 0) = 1

}
[or to the (d− 1)-disk Dd−1 :=

{
x ∈ Rd−1 | d2(x, 0) ≤ 1

}
].

A combinatorial manifold can be also described in terms of the links of all its simplices
and not only of the links of its vertices.

Proposition 6.27. Let Σ be a combinatorial d-manifold and let σ be a k-simplex of Σ.
Then, linkΣ σ is homeomorphic to the (d− k − 1)-sphere Sd−k−1.

Proof. By induction on the dimension k of σ. For the inductive step, it enough to no-
tice that, writing σ as vσ′ where v and σ′ are simplices of Σ of dimension 0 and k − 1
respectively, linkΣ σ = linklinkΣ σ′ v.

Proposition 6.28. Let Σ be a simplicial complex. If Σ is a combinatorial d-manifold
[with boundary], then |Σ| is a topological d-manifold [with boundary].

Remark 6.29. In general, the converse is not true. The equivalence between the notion
of topological and combinatorial manifold holds for simplicial complexes of dimension
d ≤ 3. For d > 4, there exist simplicial d-complexes which are topological manifold but
not combinatorial manifold. For d = 4, the problem is still open.

Intuitively, a d-manifold M is called orientable if it has a global consistent choice of
orientation. For instance, the Möebius strip and the Klein bottle are two example of non-
orientable spaces. For a formal definition of the notion of orientability we refer to Chapter
3 of [Hat02].

Definition 6.30. A topological space X is called compact if every open cover of X (i.e.,
a collection of open sets of X whose union contains X) has a finite subcover.

In the following, we will denote as closed d-manifold any compact d-manifold without
boundary.

Theorem 6.31. (Poincaré duality Theorem). LetM be an orientable closed d-manifold.
Then, for any integer k and any field F,

Hk(M ;F) ∼= Hd−k(M ;F)

Poincaré duality Theorem is usually enunciated in a more general formulation not only
for coefficients in a field [Hat02]. In that case, the theorem states that the kth cohomology
group of M is isomorphic to the (d− k)th homology group of M .

Remark 6.32. For a closed d-manifold not necessarily orientable, the isomorphism stated
in Theorem 6.31 between Hk(M ;F) and Hd−k(M ;F) is ensured only for F = Z2.

182

6.2 Perfect discrete Morse functions and homological split-
tings

The main aim of this chapter is to investigate the connections between admitting Betti
splittings and perfect discrete Morse functions.

Example 6.33. The simplicial complex Σ =< 123, 124, 134, 235, 245, 345 >, elected as
our reference example, satisfies both the just mentioned properties. Let us endow Σ with
the perfect discrete Morse function described in Example 6.21 and depicted in Figure 6.2.
In this example, we notice that the decomposition of Σ obtained by the removal of the
critical top simplex 123 represents a Betti splitting for Σ (Example 6.17) and so, for the
ideal I∗Σ (Example 6.13).

Inspired by this example, in this and in the next section, we enunciate and prove that,
under suitable conditions, admitting a perfect discrete Morse function implies admitting
a homological or a Betti splitting.

If the top homology of a simplicial complex is not null, then the existence of a perfect
discrete Morse function ensures the existence of a homological splitting.

Proposition 6.34. ([DE93], Section 3). Let Σ be a simplicial complex, τ be a top simplex
of dimension d in Σ and F be a field. Denoting the simplicial complex Σ \ {τ} as Σ′, we
have that:

• if τ belongs to a d-cycle of Σ, then

βk(Σ
′;F) =

{
βk(Σ;F)− 1 if k = d

βk(Σ;F) otherwise

• if τ does not belong to a d-cycle of Σ, then

βk(Σ
′;F) =

{
βk(Σ;F) + 1 if k = d− 1

βk(Σ;F) otherwise

Remark 6.35. Proposition 6.34 ensures us that removing from Σ a top simplex of dimen-
sion d only affects either the dth or the (d + 1)th homology group of Σ and that in each
situation just one of these modifications can happen.

Theorem 6.36. Let Σ be a simplicial complex of dimension d such that βd(Σ;F) 6= 0. If
Σ admits a perfect discrete Morse function with respect to F, then Σ admits a homological
splitting with respect to F.

Before presenting a proof of this theorem, we need to prove some preliminary results.
In order to prove that Σ admits a homological splitting with respect to F, we have to
provide two subcomplexes of Σ, generated by a partition of the set of top simplices of Σ,
satisfying the equations described in Definition 6.16.
In the following, we will call f a perfect discrete Morse function with respect to F defined

183

on Σ, τ a critical d-simplex of Σ with respect to f , Σ1 the simplicial complex Σ \ {τ}
and Σ2 the simplicial complex generated by τ . Furthermore, when this does not create
ambiguity, we will omit the field F.
To prove Theorem 6.36, we want to show that Σ1, Σ2 are two subcomplexes providing
a homological splitting of the simplicial complex Σ. The information required to verify
this claim are the assurance that Σ1 is generated by the top simplices of Σ different from
τ and the knowledge of the homology of Σ1, Σ2 and Σ1 ∩ Σ2.

Lemma 6.37. With the above notation, we have that

βk(Σ1) =

{
βk(Σ)− 1 if k = d

βk(Σ) otherwise

Proof. Since f is a discrete Morse function on Σ, its restriction f |Σ1 to Σ1 is still a discrete
Morse function and its critical simplices are the same of f except for τ . So,

βd(Σ1) ≤ #Cd(f |Σ1) = (weak Morse inequality)

= #Cd(f)− 1 (Σ1 = Σ \ {τ})
= βd(Σ)− 1 (f is perfect on Σ)

Then, by using Proposition 6.34, we reach the thesis.

In order to prove that Σ1 = Σ \ {τ} coincides with the simplicial complex generated by
the top simplices of Σ different from τ , we need to show that τ is not on a simplex on the
boundary (as topological space) of Σ.

Lemma 6.38. With the above notation, there does not exist any σ ∈ bdΣ τ such that
cbdΣ σ = {τ}.

Proof. Let us suppose that there exists in Σ such a simplex σ. Since cbdΣ σ = {τ},
(σ, τ) represents a reduction pair whose removal preserves the homology. So, Σ and
Σ′ := Σ \ {σ, τ} are homologically equivalent.
On the other hand, we can consider Σ′ as Σ1 \ {σ}. So, by Proposition 6.34, we have that
either

βk(Σ
′) =

{
βk(Σ1)− 1 if k = d− 1

βk(Σ1) otherwise
or βk(Σ

′) =

{
βk(Σ1) + 1 if k = d− 2

βk(Σ1) otherwise

In both the cases, βd(Σ) = βd(Σ
′) = βd(Σ1). But this is in contradiction with Lemma

6.37.

As immediate consequence of Lemma 6.38, we obtain the following result.

Lemma 6.39. With the above notation, Σ1 coincides with the simplicial complex gener-
ated by the top simplices of Σ different from τ , i.e.,

Σ \ {τ} =< τ ′ | τ ′ top simplex of Σ, τ ′ 6= τ >

184

Proof. The inclusion "⊇" is obvious. Let us focus on the inclusion "⊆".
In order to verify that inclusion "⊆" holds, to show that each σ ∈ bdΣ τ also belongs
to < τ ′ | τ ′ top simplex of Σ, τ ′ 6= τ > is enough. Lemma 6.38 ensures that, for each
σ ∈ bdΣ τ , # cbdΣ σ > 1. So, there exists a top simplex τ ′ 6= τ in Σ containing σ.

Proof of Theorem 6.36

Proof. According to the above notation, we claim that the decomposition of Σ in Σ1∪Σ2

provides a homological splitting of Σ.
By Lemma 6.39, we have that the decomposition Σ1 ∪Σ2 is actually a partition of the set
of the top simplices of Σ, i.e. a standard decompostion.
By Lemma 6.37, we have that

βk(Σ1) =

{
βk(Σ)− 1 if k = d

βk(Σ) otherwise

Trivially,

βk(Σ2) =

{
1 if k = 0

0 otherwise

If d = 0, Σ1 ∩ Σ2 is equal to the empty set, otherwise it coincides with the simplicial
complex generated by the simplices in the boundary of τ and it is homeomorphic to the
(d− 1)-sphere Sd−1. Therefore,

βk(Σ1∩Σ2) =

{
2 if k = 0

0 otherwise
if d = 1 βk(Σ1∩Σ2) =

{
1 if k = 0, d− 1

0 otherwise
if d > 1

It is easy to check that the above Betti numbers satisfy the equations described in Defini-
tion 6.16. Here, the explicit calculation.
Case d = 0.
β0(Σ1) + β0(Σ2) = β0(Σ)− 1 + 1 = β0(Σ)
Case d = 1.
β0(Σ1) + β0(Σ2)− 1 = β0(Σ) + 1− 1 = β0(Σ)
β1(Σ1) + β1(Σ2) + β0(Σ1 ∩ Σ2)− 1 = β1(Σ)− 1 + 0 + 2− 1 = β1(Σ)
Case d > 1.
β0(Σ1) + β0(Σ2)− 1 = β0(Σ) + 1− 1 = β0(Σ)
β1(Σ1) + β1(Σ2) + β0(Σ1 ∩ Σ2)− 1 = β1(Σ) + 0 + 1− 1 = β1(Σ)
βk(Σ1) + βk(Σ2) + βk−1(Σ1 ∩ Σ2)− 1 = βk(Σ) + 0 + 0 = βk(Σ) if 1 < k < d
βd(Σ1) + βd(Σ2) + βd−1(Σ1 ∩ Σ2)− 1 = βk(Σ)− 1 + 0 + 1 = βd(Σ)

Example 6.40. Theorem 6.36 can be applied to simplicial complex Σ =< 123, 124, 134,
235, 245, 345 > depicted in Figure 6.1 (a). Considering the perfect discrete Morse func-
tion proposed in Example 6.21 and depicted in Figure 6.2, Theorem 6.36 ensures us that
< 123 > ∪ < 124, 134, 235, 245, 345 > represents a homological splitting of Σ (as
confirmed in Example 6.17).

185

Remark 6.41. In general, the converse of Theorem 6.36 is false. The simplicial com-
plex S18,125 considered in [LB13] and representing a triangularization of a 3-dimensional
sphere is an example of this. Being S18,125 a sphere, its top homology is non-null and it
admits a homological splitting [Bol15]. In spite of this, S18,125 does not admit any perfect
discrete Morse function (see [LB13], Theorem 5.2).

The technical hypotheses required by Theorem 6.36 are satisfied by a large and interesting
class of simplicial complexes: the orientable manifolds.

Corollary 6.42. Let the simplicial complex Σ be an orientable d-manifold. If Σ admits a
perfect discrete Morse function with respect to F, then Σ admits a homological splitting
with respect to F.

Proof. Each finite simplicial complex is compact. So, Σ satisfies the hypotheses of
Poincaré duality Theorem 6.31. Since β0(Σ) is necessarily different from 0, by Theo-
rem 6.31, we have that βd(Σ) = β0(Σ) 6= 0. By applying Theorem 6.36, we reach the
thesis.

Thanks to Remark 6.32, even if the orientability hypothesis in Corollary 6.42 is not satis-
fied, we can still reach the following result.

Corollary 6.43. Let the simplicial complex Σ be a d-manifold. If Σ admits a perfect
discrete Morse function with respect to Z2, then Σ admits a homological splitting with
respect to Z2.

6.3 Perfect discrete Morse functions and Betti splittings

By exploiting the results of the previous section, we describe here under which hypotheses
the obtained homological splitting for Σ is also a Betti splitting. Furthermore, the reached
result will be useful to prove that any 2-dimensional manifold admits a Betti splitting.

This section is mainly devoted to proving the following theorem.

Theorem 6.44. Let the simplicial complex Σ be a manifold of dimension d ≤ 3 such that
βd(Σ;F) 6= 0. If Σ admits a perfect discrete Morse function with respect to F, then Σ
admits a Betti splitting with respect to F.

In order to prove Theorem 6.44, we need the following preliminary result.

Lemma 6.45. Let Σ be a simplicial complex homeomorphic to the k-sphere Sk with k ≤
2. Given any k-simplex ν ∈ Σ and a field F, there exists a perfect discrete Morse function
with respect to F on Σ for which ν is a critical simplex.

Proof. The simplicial complex Σ \ {ν} is homeomorphic to a k-disk and each k-disk, for
k ≤ 2, is collapsable [LB13].

Remark 6.46. Since, for each k > 2, there exist non-collapsible k-balls [LB13], the
above lemma is not true in dimensions higher than 2.

186

Proof of Theorem 6.44

Proof. Let f be a perfect discrete Morse function with respect to F defined on Σ and let
τ be a critical d-simplex of Σ with respect to f . Analogously to the proof of Theorem
6.36, we want to show that the decomposition of Σ in Σ1 = Σ \ {τ} (also equal to
< τ ′ | τ ′ top simplex of Σ, τ ′ 6= τ > by Lemma 6.39) and Σ2 =< τ > provides a Betti
splitting of Σ.
Thanks to Proposition 6.18, it is enough to prove that, for each σ ∈ Σ1 ∩ Σ2, linkΣ σ =
linkΣ1 σ ∪ linkΣ2 σ is a homological splitting of linkΣ σ.
If σ = ∅, then linkΣ1 σ = Σ1, linkΣ2 σ = Σ2 and linkΣ σ = Σ. So, by Theorem 6.36, we
reach the thesis.
Let k be the dimension of σ. Since the dimension of the manifold Σ is d ≤ 3, Remark
6.29 ensures us that Σ is a combinatorial manifold. So, by Proposition 6.27, linkΣ σ is
homeomorphic to the (d − k − 1)-sphere Sd−k−1. Furthermore, thanks to Lemma 6.45,
linkΣ σ satisfies the hypotheses of Theorem 6.36 and, choosing any (d− k − 1)-simplex
ν in linkΣ σ, there exists a perfect discrete Morse function with respect to F on linkΣ σ
for which ν is a critical simplex. Let us set ν as the (d − k − 1)-simplex of Σ such that
linkΣ2 σ =< ν > (i.e. ν is the simplex of Σ such that νσ = τ). Then, by applying
Theorem 6.36, linkΣ σ = linkΣ1 σ ∪ linkΣ2 σ is a homological splitting of linkΣ σ.

Example 6.47. Similarly to the previous section, simplicial complex Σ =< 123, 124, 134,
235, 245, 345 > represents an example in which Theorem 6.44 can be applied ensuring
that the decomposition < 123 > ∪ < 124, 134, 235, 245, 345 > is a Betti splitting of Σ.

Remark 6.48. Since the 3-dimensional sphere S18,125 admits a Betti splitting but not a
perfect discrete Morse function, the converse of Theorem 6.44 does not hold in general.

Thanks to the Poincaré duality Theorem 6.31, the hypothesis β0(Σ) 6= 0 in Theorem 6.44
is automatically satisfied if we consider an orientable manifold.

Corollary 6.49. Let the simplicial complex Σ be an orientable manifold of dimension
d ≤ 3. If Σ admits a perfect discrete Morse function with respect to F, then Σ admits a
Betti splitting with respect to F.

Thanks to Remark 6.32, even if the orientability hypothesis in Corollary 6.49 is not satis-
fied, we can still reach the following result.

Corollary 6.50. Let the simplicial complex Σ be a manifold of dimension d ≤ 3. If Σ
admits a perfect discrete Morse function with respect to Z2, then Σ admits a Betti splitting
with respect to Z2.

For some classes of simplicial complexes, the hypotheses required by the proven propo-
sitions are always satisfied. For example, Proposition 3.4 in [AFTV12] states that any
compact connected surface admits a perfect discrete Morse function with respect to Z2.
By combining this result with Corollary 6.50, the following proposition can easily de-
duced.

Proposition 6.51. Any 2-manifold simplicial complex Σ admits a Betti splitting with re-
spect to Z2.

187

6.4 Concluding remarks

The main contribution of this chapter is the direct connection between the notions of
splitting and of perfect discrete Morse function established by Theorem 6.36 and Theorem
6.44. Moreover, thanks to Proposition 6.51, the existence of a Betti splitting is ensured
for any 2-manifold.

Theorem 6.36 plays a crucial role mainly in the proof of Theorem 6.44. In spite of this,
we believe that Theorem 6.36 could become a fundamental theoretical tool for the de-
velopment of an algorithmic test for checking if a simplicial complex admits or not a
perfect discrete Morse function. Its statement ensures that if a simplicial complex Σ with
non-null top homology does not admit any homological splitting, then Σ does not admit
a perfect discrete Morse function too. So, if we algorithmically check that any possible
decomposition of Σ does not lead to a homological splitting, then we have the assurance
no perfect discrete Morse function can be built on Σ. Moreover, since the homological
splitting decompositions returned by Theorem 6.36 are obtained through a removal of a
single top simplex, the number of decompositions to be checked by the algorithm will be
drastically reduced.

In the near future, our task is to understand if it is possible to generalize the presented
results to higher dimensions and which hypotheses are really necessary to ensure the va-
lidity of the theses. Currently, our efforts are devoted to understand if the connection
established by Theorem 6.36 and Theorem 6.44 still holds for simplicial complexes with
vanishing top homology. In particular, we plan to firstly investigate the case of simpli-
cial complexes having trivial homology, trying to understand if a collapsible simplicial
complex necessarily admits a Betti splitting.

188

Concluding Remarks

In this thesis, we have investigated some tools in topological data analysis focusing our at-
tention on the simplicial homology and the discrete Morse theory. The main contributions
of this thesis are in these directions:

• an analysis and a comparison of different topological data structures for encoding
simplicial complexes of arbitrary dimension [FID14, FIDon];

• a complete classification of various approaches and strategies to compute standard
and persistent homology;

• a systematic overview on Morse theory and its discretization and on algorithms to
compute Morse complexes [DFIM15, DFI15];

• a theoretical comparison between various methods to build a Forman gradient
through homology-preserving operators [FID14, FIDon];

• the definition and the development of a compact encoding of the Forman gradient
for a data structure based on top simplices [FID14, FIDon];

• the development and the implementation of an algorithm for the construction of a
discrete Morse complex and the retrieval of standard and persistent homology based
on coreduction operators and on a compact encoding of the Forman gradient and of
the underlying simplicial complex [FID14, FIDon];

• a study of topological operators for modifying cell and simplicial complexes
[ČomićDIF14];

• the formal definition of a general geometry-based multi-resolution model for cell
complexes;

• the definition and the implementation of a multi-resolution model for cell com-
plexes for the efficient retrieval of homology and the extraction of homology gen-
erators [ČomićDIF14];

• the definition of a multi-resolution model for simplicial complexes for the efficient
retrieval of homology and the extraction of homology generators;

• the development of a new compact and efficient data structure for encoding discrete
Morse complexes [IFD15];

189

• the development and the implementation of a topologically-consistent algorithm for
the simplification of discrete Morse complexes [IFD15];

• a study of the connections between simplicial complexes and squarefree monomial
ideals, proving that the satisfaction of suitable properties in discrete Morse theory
for a simplicial complex ensures desirable algebraic decompositions of the corre-
sponding ideal [BFRDon].

Thanks to the results obtained during the Ph.D. studies, we are planning to further study
many of the topics addressed during the thesis work.

We can subdivide the planned research activity according to the task we want to achieve
in:

• methods to improve standard and persistent homology computation;

• methods based on discrete Morse theory to represent and analyze scalar fields;

• investigation of the topological properties of a simplicial complex through an alge-
braic point of view.

Knowledge of standard and persistent homology allows us to describe the core topo-
logical information of a simplicial complex or of a sequence of them. Our analysis of
the methods proposed in the literature has revealed several efficient approaches to retrieve
homological information. In the near future, we will continue the study of the methods to
compute homological information of a complex and in order to fill a gap in the literature,
we plan to describe and classify them in a survey.

Currently, the Gudhi library [MBGY14] and the approach based on annotations [BDM13]
are the state-of-the-art method for what concern performances and compactness in persis-
tent homology computation. In spite of this, we believe that methods based on data struc-
tures encoding all the simplices of a simplicial complex will be affected by serious lim-
itations when dealing with datasets of large size, huge dimension and built starting from
a cloud of points. These limitations can be overcome by the use of compact data struc-
tures and the use of discrete Morse theory as a tool providing a compact and homology-
equivalent model of the simplicial complex under investigation. The coreduction-based
algorithm described in Chapter 3 represents a first attempt in this direction. In the next, we
would like to further develop this strategy and to exploit it in various applications. A first
development we plan to do is the implementation of a distributed version of the presented
algorithm. This will be possible by the use of the Stellar Tree[Fel15], a compact topo-
logical data structure based on a spatial index, which stores only the vertices and the top
simplices of the complex. This latter would not only reduce the storage cost further, but
also allow an efficient localized computation of the homology, overcoming the limitation
in this of the IA∗ data structure. Improvements in the retrieval of persistent homology
could be also obtained by performing a simplification step on the discrete Morse complex
obtained during the execution of the coreduction-based algorithm. This result could be
achieved by exploiting the topologically-consistent simplification algorithm introduced in
Chapter 5.

190

Multi-dimensional persistent homology [CZ09, CSZ09] represents a generalization of the
persistent homology allowing to describe the changes in homology of a simplicial com-
plex parameterized along multiple scalar functions. As recently proposed in [AKL16,
AKLM15], the computation of multi-dimensional persistent homology can be improved
by exploiting discrete Morse theory. We expect that, after suitable modifications, the
Morse-based algorithm developed in Chapter 3 could enhance the efficiency allowing a
practical applicability of this method.

Multi-resolution models represent an interesting tool able to compactly represent and an-
alyze a dataset at different levels of detail. In our work, we have combined for the first
time the retrieval of homology with a multi-resolution model. Since the promising re-
sults obtained in the case of cell complexes, we plan to actually implement a hierarchical
model for simplicial complexes. We believe that, analogously to the cellular case, this
model will allow both a compact encoding of different representations of a simplicial
complex and an efficient extraction of homology and of homology generators at any level
of detail. In order to achieve this task, a dimension independent edge contraction is being
implemented in the context of Stellar Tree.

The compact representation provided by discrete Morse theory has been recognized as a
fundamental tool in both the study of the morphology of scalar fields and the topological
analysis of simplicial complexes.

When working with data with scalar functions defined on high dimensional domains, such
as 3D and time-varying scalar fields, a simplified substructure of the Morse-Smale com-
plex, called extremum graph, has been proposed [CLB11]. The extremum graphs and
their visual representations, the topological spines, can be extracted from the Forman gra-
dient and provide the perfect framework for interactively studying subsets of the domain.
We plan to suitably adapt the algorithms presented in Chapter 3 to quickly extract the ex-
tremum graph of a scalar field defined on a simplicial complex and to visually represent
it through a topological spine.

Multi-resolution models represent another useful tool to enhance our knowledge of the
morphology and the topology of a scalar field. In our plans, we aim to develop a multi-
resolution model for discrete Morse complexes combining both geometrical and mor-
phological modifications. This goal has been achieved in the context of 2-dimensional
simplicial complex leading to the definition of a multi-resolution model for triangulated
terrains [ID14]. The resolution of the inconsistency problem addressed in [GRSW13]
and affecting the simplifications of discrete Morse complex of dimension greater than 2
leads to a good management of the morphological modifications and to an increase of
the expressive power of a multi-resolution model. So, the topologically-consistent sim-
plification algorithm proposed in Chapter 5 represents a first step in the definition of a
dimension-independent version of such a multi-resolution model for discrete Morse com-
plexes.

Further steps required to reach such goal are the development of simplification operators
modifying the geometry of a simplicial complex without affecting the Forman gradient
defined on it and the definition of a multi-resolution model based on geometrical and mor-
phological simplification operators.
Typically, a simplification of a discrete Morse complex reduces its size, but leaves the

191

geometry of the underlying simplicial complex unchanged. In order to obtain a complete
multi-resolution model, the possibility of simplifying discrete Morse complex also from
a geometrical point of view is required. In this framework, our task will be to simplify
the underlying geometrical structure of a complex by reducing its size through homology-
preserving operators, while we maintain not only the homology of the complex but also
the Forman gradient defined on it. Analogously to [ID14], we plan to consider as sim-
plifying operator the edge contraction and to understand under which conditions the per-
formance of this operator does not affect the morphology of the Forman gradient. Once
this problem will be solved, we will combine these operators with morphology-modifying
operators in order to design and implement a multi-resolution model for discrete Morse
complexes based on both these kinds of modifications.

Another field on which we plan to keep on working is the study of the simplicial com-
plexes through an algebraic point of view. The results obtained in Chapter 6 represent
just a first step in this direction. We believe that an in-depth investigation of the bridge
between topology and algebra established by the Stanley-Reisner correspondence could
lead to create strong relations between topological and geometrical properties of simpli-
cial complexes and algebraic and combinatorial properties of squarefree monomial ideals.
In the short term, our task is to understand if it is possible to generalize the results ob-
tained in Chapter 6 to higher dimensions and to relax their assumptions in order to prove
more general propositions. Further, we would like to understand if the theorems proven
could be useful for the development of an algorithmic test to check if a simplicial complex
does not admit any perfect Morse function.

192

Appendix A

In this appendix, we present some notions and results useful for the thesis. These con-
tributions have been discussed separately from the rest of the thesis in order to avoid to
burden the reading.

Statement and proof of Proposition 4.14 (Subsection 4.3.3)

Proposition. Let Γ be a d-dimensional cell complex, Γ′ the cell complex obtained from Γ
by applying MiC(i+1)C(q, p, p′). For a fixed k ∈ {0, · · · , d}, let B = {[c1]

Γ
, · · · , [cl]Γ}

be a basis for Hk(Γ;Z2), then

1) if k 6= i+ 1, [c1]
Γ′
, · · · , [cl]Γ′ is a basis for Hk(Γ

′;Z2);

2) if k = i+1, B′ = {[c′1]
Γ′
, · · · , [c′l]Γ′} is a basis for Hi+1(Γ′;Z2), where, if [c]

Γ
∈ B,

[c′]
Γ′
∈ B′ is defined by

c′ =

{
c if ∂

Γ′
c = 0

c+ q otherwise

Proof. Throughout the proof and the statement we denote as ∂
Γ

and ∂
Γ′

the boundary
maps ∂

Γ
⊗ZZ2 and ∂

Γ′
⊗ZZ2 respectively and all calculations are to be considered modulo

2. We give the proof for the case when the refinement operator is of the type expand
(MiC(i + 1)Cex(q, p, p

′)). The case when the operator is of the type insert (MiC(i +
1)Cin(q, p, p′)) is dual.

In order to prove that a set of elements of Ck(Γ′;Z2) is a basis for the Z2 vector space
Hk(Γ

′;Z2) we have to show that:

a) each element is in Zk(Γ′;Z2);

b) each element is not in Bk(Γ
′;Z2);

c) the elements are linearly independent.

1) The only non-trivial cases are for k = i+ 2, i, i− 1.
Case k = i+ 2.

193

a) Let c ∈ Ci+2(Γ;Z2) be such that [c]
Γ

is a basis element for Hi+2(Γ;Z2). We can
consider c as an element in Ci+2(Γ′;Z2). We have that

∂
Γ′
c = ∂

Γ
c+mq = mq

where m ∈ {0, 1}.
Suppose that m = 1, i.e., ∂

Γ′
c = q. Then, since ∂2

Γ′
= 0,

∂
Γ′
q = ∂2

Γ′
c = 0

But, 〈∂
Γ′
q, p〉 = 1, so

∂
Γ′
q = p + · · · 6= 0

Hence, c ∈ Zi+2(Γ′;Z2).

b) Suppose ∃ b ∈ Ci+3(Γ′;Z2) such that ∂
Γ′
b = c. Since no (i + 3)-cell and no

(i + 2)-cell is created in Γ′, we have that ∂
Γ′,i+3

= ∂
Γ,i+3

, and ∂
Γ
b = ∂

Γ′
b = c. So,

c ∈ Bi+2(Γ;Z2).

c) [c1]
Γ′
, · · · , [cl]Γ′ are linearly dependent in Hi+2(Γ′;Z2)

⇔ for each j = 1, · · · , l, ∃αj ∈ {0, 1} such that [α1c1 + · · · + αlcl]Γ′ = [0]
Γ′

and
at least one αj 6= 0

⇔ ∃ b ∈ Ci+3(Γ′;Z2) such that ∂
Γ′
b =

∑l
j=1 αjcj

⇔ ∃ b ∈ Ci+3(Γ;Z2) such that ∂
Γ
b =

∑l
j=1 αjcj

⇔ for each j = 1, · · · , l, ∃αj ∈ {0, 1} such that [α1c1 + · · ·+ αlcl]Γ = [0]
Γ

and at
least one αj 6= 0
⇔ [c1]

Γ
, · · · , [cl]Γ are linearly dependent in Hi+2(Γ;Z2)

Case k = i.

a) Let c ∈ Ci(Γ;Z2) such that [c]
Γ

is a basis element for Hi(Γ;Z2). Since p does not
appear in c, we have that

∂
Γ′
c = ∂

Γ
c = 0

b) Suppose ∃ b ∈ Ci+1(Γ′;Z2) such that ∂
Γ′
b = c. There are two cases.

If q does not appear in b, then b ∈ Ci+1(Γ;Z2) and

∂
Γ
b = ∂

Γ′
b + 〈∂

Γ′
q, p′〉mp′ = c + 〈∂

Γ′
q, p′〉mp′

where m =
∑

s∈{r (i+1)-cell in Γ′ | r is in b}〈∂Γ′
s, p〉 is the number of the (i + 1)-cells in

b in which p is incident in Γ′. Since ∂
Γ′
b = · · · + mp and we know that ∂

Γ′
b = c,

then m has to be an even number and so ∂
Γ
b = c.

If q appears in b, then b− q ∈ Ci+1(Γ;Z2) and

∂
Γ
(b− q) = c − 〈∂

Γ′
q, p′〉p′ + 〈∂

Γ′
q, p′〉mp′

= c + 〈∂
Γ′
q, p′〉mp′

wherem =
∑

s∈{r (i+1)-cell in Γ′ | r 6= q, r is in b}〈∂Γ′
s, p〉 is the number of the (i+1)-cells

in b− q in which p is incident in Γ′. Since ∂
Γ′

(b− q) = · · · +mp and we know that
∂

Γ′
(b − q) = ∂

Γ′
b − ∂

Γ′
q = c + · · · + p, then m has to be an odd number and so

∂
Γ
(b− q) = c.

194

c) Suppose that [c1]
Γ′
, · · · , [cl]Γ′ are linearly dependent in Hi(Γ

′;Z2). This implies
that, for each j = 1, · · · , l, ∃αj ∈ {0, 1} such that [α1c1 + · · ·+ αlcl]Γ′ = [0]

Γ′
and

at least one αj 6= 0, i.e., ∃ b ∈ Ci+1(Γ′;Z2) such that ∂
Γ′
b =

∑l
j=1 αjcj .

With arguments analogous to those used in b), we can conclude that either ∂
Γ
b =∑l

j=1 αjcj or ∂
Γ
(b− q) =

∑l
j=1 αjcj and so, [c1]

Γ
, · · · , [cl]Γ are linearly dependent

in Hi(Γ;Z2).

Case k = i− 1.

a) Let c ∈ Ci−1(Γ;Z2) such that [c]
Γ

is a basis element for Hi−1(Γ;Z2). We can
consider c as an element in Ci−1(Γ′;Z2). Since no (i − 1)-cell and no (i − 2)-cell
is created in Γ′, we have that ∂

Γ′,i−1
= ∂

Γ,i−1
and

∂
Γ′
c = ∂

Γ
c = 0

b) Suppose ∃ b ∈ Ci(Γ′;Z2) such that ∂
Γ′
b = c. For all i-cell s 6= p of Γ′, we have that

∂
Γ
s = ∂

Γ′
s (∗)

There are two cases.
If p does not appear in b, then, by (∗), we have that

∂
Γ
b = ∂

Γ′
b = c

Otherwise, if p appears in b, since ∂2
Γ′

= 0, we have that

0 = ∂2

Γ′
q = ∂

Γ′
(p + (∂

Γ′
q − p)) = ∂

Γ′
p + ∂

Γ′
(∂

Γ′
q − p)

Hence,

∂
Γ′
p = ∂

Γ′
(∂

Γ′
q − p) = ∂

Γ
(∂

Γ′
q − p) (∗∗)

Then, b + ∂
Γ′
q ∈ Ci(Γ;Z2) and

∂
Γ
(b + ∂

Γ′
q) = ∂

Γ
(b + p− p + ∂

Γ′
q)

= ∂
Γ
(b + p) + ∂

Γ
(∂

Γ′
q − p)

= ∂
Γ′
b + ∂

Γ′
p + ∂

Γ
(∂

Γ′
q − p) by (∗)

= ∂
Γ′
b + ∂

Γ′
p + ∂

Γ′
p by (∗∗)

= c

c) Analogous to the previous case.

2) Let’s prove now the case k = i + 1. We have to show that if B = {[c1]
Γ
, · · · , [cl]Γ} is

a basis for Hi+1(Γ;Z2), then B′ = {[c′1]
Γ′
, · · · , [c′l]Γ′} is a basis for Hi+1(Γ′;Z2).

195

a) Let c ∈ B, i.e., c ∈ Ci+1(Γ;Z2) such that [c]
Γ

is a basis element for Hi+1(Γ;Z2).
We want to prove that ∂

Γ′
c′ = 0.

If ∂
Γ′
c = 0, then c′ = c and ∂

Γ′
c′ = ∂

Γ′
c = 0.

Otherwise ∂
Γ′
c 6= 0 and c′ = c + q. In order to conclude, we want to show that

∂
Γ′
c = ∂

Γ′
q. This is indeed true, because we have that

∂
Γ′
c = ∂

Γ
c−m〈∂

Γ′
q, p′〉p′ +mp

= m(〈∂
Γ′
q, p′〉p′ + p)

where m =
∑

s∈{r (i+1)-cell in Γ′ | r is in c}〈∂Γ′
s, p〉 is the number of the (i + 1)-cells in

c in which p is incident in Γ′. Since ∂
Γ′
c 6= 0, m is an odd number, and

∂
Γ′
c = 〈∂

Γ′
q, p′〉p′ + p = ∂

Γ′
q

As a consequence,

∂
Γ′

(c′) = ∂
Γ′

(c + q) = ∂
Γ′
c + ∂

Γ′
q = 0

b) For each (i+ 2)-cell t in Γ′, we have that ∂
Γ
t = ∂

Γ′
t−

〈∂
Γ′
t, q〉q. If ∃ b ∈ Ci+2(Γ′;Z2) such that ∂

Γ′
b = c′, then

∂
Γ
b = ∂

Γ′
b +mq = c′ +mq

where m =
∑

t∈{r (i+2)-cell in Γ′ | r is in b}〈∂Γ′
t, q〉.

Since m is even if c′ = c and m is odd if c′ = c + q, we can conclude that

∂
Γ
b = c

c) Analogous to the previous case.

196

List of Figures

1.1 Examples of simplices of dimension 0, 1, 2, 3. 16

1.2 A simplicial complex (a) and a collection of simplices that is not a sim-
plicial complex (b). 17

1.3 (a) A finite set of points P . (b) The Vietoris-Rips complex associated with
P choosing as ε the depicted distance. 20

1.4 (a) A regular cell complex of dimension 2. (b) A non regular cell complex
of dimension 2; 0-cell p represents a irregular face for 1-cell q. 21

1.5 An example of 3-dimensional regular grid. 22

1.6 A triple torus and its homology groups. The exponent of each group
has a geometrical meaning. The exponent 1 in the 0th homology groups
implies that the shape is path-connected, the first homology group Z6

describes that the triple torus has six independent non-bounding cycles,
finally, the exponent 1 of the second homology group tells us that the
surface surrounds a void. 23

1.7 Three examples that intuitively show how the boundary operator acts. . . 26

1.8 A simplicial complex with two highlighted 1-cycles. The green one is
also a boundary and so it is null in homology. The orange one instead is
not a boundary and provides a non-null contribution in the first homology.
This is in accord with the intuitive idea that homology detects holes. . . . 26

1.9 A simplicial complex Σ in which a set of generators of H1(Σ) has been
highlighted. The number of generators of H1(Σ) coincides with β1 = 10. 27

1.10 A Klein bottle Σ forcedly embedded in R3. Its homology groups are
H0(Σ) = Z, H1(Σ) = Z⊕ Z2 and H2(Σ) = Z. 28

1.11 The simplicial complex Σ used in Example 1.32. 32

1.12 An example of filtration F of a simplicial complex Σ. Betti numbers of
each simplicial complex of the filtration are reported. Persistent homol-
ogy captures the changes in the Betti numbers during the filtration. 34

197

1.13 Red and blue triangles indicate maxima and minima. Green squares indi-
cate saddles. (a) The set of integral lines converging to a maximum and
forming the (red) descending cell. (b) The set of integral lines originat-
ing from a minimum and forming the (yellow) ascending cell. The set of
all the descending and ascending cells forming (c) the descending Morse
complex ΓD and (d) the ascending Morse complex ΓA. (e) Resulting
Morse-Smale complex and (f) 1-skeleton of the Morse-Smale complex. . 37

1.14 Classification of a vertex according to Banchoff [Ban67]: (a) minimum,
(b) maximum, (c) regular, (d) simple saddle. 38

1.15 (a) A discrete Morse function on a simplicial complex and (b) the corre-
sponding gradient vector field (red simplices represent critical simplices). 41

1.16 (a) A gradient vector field defined on a simplicial complex. For a terrain
dataset, discrete Morse function f corresponds to the height function and
its critical points are peaks (red dots), saddles (green dots) and pits (blue
dots). (b) Descending Morse complex decomposes the terrain in a col-
lection of 2-cells in one to one correspondence with the peaks while (c)
the 2-cells forming the ascending Morse complex are in one-to-one corre-
spondence with the pits. (d) The 1-skeleton of the Morse-Smale complex.
The separatrix V -paths for a terrain dataset always connect a saddle with
a maximum or a saddle with a minimum. 43

2.1 A simplicial complex (a) and its representation as the Incidence Graph
(b), as the IA∗ data structure (c) and as the extended version of Simplex
Tree (d). 47

2.2 An acyclic subcomplex A of a simplicial complex Σ. By considering the
simplex σ, A ∪ σ is still acyclic and A can be updated to A ∪ σ. Instead,
the simplex σ′ cannot be added to A, since A ∪ σ′ is no more acyclic. . . 57

2.3 On the left, the pairs denoted as (σ, τ) represent for the corresponding
S-complexes a reduction pair (a) and a coreduction pair (b), respectively.
On the right, the removals of the reduction pair (a) and of the coreduction
pair (b) have been performed. Empty vertices and hashed edges represent
missing cells. 60

2.4 An example of reduction operations. In the last complex, no more reduc-
tion is available. 61

2.5 An example of coreduction operations. The missing vertices are marked
with empty circles and the missing edges with thin lines. 62

2.6 Simplices underlined in green, blue and red represent the link of u, v and
uv, respectively. Above, the edge contraction of uv into w performed on
a configuration satisfying the link condition and so homology-preserving.
Below, the edge contraction of uv into w which modifies the homology
of the simplicial complex and so not satisfying the link condition. 64

198

2.7 A triangulated sphere S2 and an its decomposition in two subcomplexes
A and B. 67

2.8 An example of an MC decomposition: a hollow ball that is pinched at the
top and has a circular ring (a), its MC decomposition into three manifold-
connected components (b). 69

2.9 Given a space equipped with a cover (a), first blow up the space into local
pieces (b) and then glue back the pieces to get the blowup complex (c),
giving a filtration consisting of two complexes at times t = 0 and t = 1,
respectively. 70

2.10 A simplicial complex endowed with a valid annotation with F = Z2. . . . 73

2.11 The only two possibility of elementary inclusion of a 2-simplex. In (a),
according to Case 1, the new simplex increases β2. In (b), according to
Case 2, the new simplex decreases β1. 75

3.1 A sequence of reduction pairs (blue arrows) and top simplex removals
(red simplices) produced by a reduction-based algorithm on a simplicial
complex. 96

3.2 The sequence of coreduction pairs (blue arrows) and free simplex re-
movals (red simplices) obtained by taking in the reverse order the reduction-
based sequence considered in Figure 3.1. 96

3.3 A gradient vector field V on a simplicial complex Σ that cannot be pro-
duced by a coreduction-based algorithm in which critical simplices are
introduced only when no more coreduction pair is feasible. 97

3.4 Example of the pairs encoded for a triangle. 101

3.5 (a) A simplicial complex Σ decomposed in the lower stars of its vertices
(different lower stars are depicted by using different colors) where, the
labels of the vertices represent the scalar values taken by the function f .
(b) The filtered Forman gradient V obtained by applying Algorithm 3 on
the simplicial complex Σ depicted in (a). The red simplices denote the
simplices declared as critical while, the blue arrows represent the pairs of
V . 105

3.6 Descending and ascending traversals used during the computation of the
V -path connecting τ and σ. 108

4.1 Effect of contract operator K0C1Cco(q, p, p
′) on a 2-dimensional cell

complex. 117

4.2 Effect of remove operatorK0C1Cre(q, p, p
′) on a 2-dimensional cell com-

plex. 118

4.3 Examples of homology-modifying operators on a 2-complex: M0C0Cycle
(Make 0-Cell and 0-Cycle) (a); M1C1Cycle (Make 1-Cell and 1-Cycle)
(b); M2C2Cycle (Make 2-Cell and 2-Cycle) (c). 120

199

4.4 Effect of the elementary excision excision(σ) on a 2-dimensional simpli-
cial complex. 124

4.5 Effect of the edge contraction contraction(u, v, w) on a 2-dimensional
simplicial complex. 125

4.6 The reduction reduction(σ, τ) removing the simplices σ and τ and its
decomposition in elementary excisions excision(τ), excision(σ) 127

4.7 The operator µ contracting the edge e2 applied in two different domains
(a) and (b). For both the situations, the operation of µ is depicted in terms
of modifications on the cell complex and on the Incidence Graph. The
graph subsets H1 = (N1, A1) and H2 = (N2, A2) consist of the nodes
and the arcs represented in red and light blue, respectively. 129

4.8 A sequence of operators consisting of (from left to right) K1C2Cre
(q, p, p′), K1C2Cre(q1, p1, p

′
1) and K0C1Cco(q2, p2, p

′
2) on a 2-dimen-

sional cell complex. Blue dots (e.g., p2 and p′2) correspond to 0-cells,
green dots (e.g., q, q1 and q2) to 1-cells and red dots (e.g., p, p′, p1 and p′1)
to 2-cells. 135

4.9 An example of an HCC built from the simplification process illustrated
in Figure 4.8. The top level of the HCC is the root node encoding the
complex at the coarsest resolution. At the bottom level are twoM1C2Cin
operators. The M1C2Cin(q, p, p′) depends on the M0C1Cex(q2, p2, p

′
2)

and the M1C2Cin(q1, p1, p
′
1) depends only on the root. Blue dots (e.g.,

p2 and p′2) correspond to 0-cells, green dots (e.g., q, q1 and q2) to 1-cells
and red dots (e.g., p, p′ and p′1) to 2-cells. On the right, three different
complexes are shown, obtained by performing different closed sets of re-
finements on the HCC as indicated by the red lines. 136

4.10 (a) A cell complex representing a torus. Black dots represent 0-cells. Red
(dotted) and blue (bold) edges correspond to the two H1 generators. (b)
Application of operator M0C1Cex(q1, p1, p

′), which affects one of the
homology generators. (c) Application of operator M0C1Cex(q2, p2, p

′),
which does not affect the homology generators. 143

4.11 The H1 generators computed on the Fertility dataset (a) and on the Hand
dataset (b) by fully refining the cell complex. 145

4.12 The H1 generators computed on the Fertility dataset and on the Hand
dataset. In (a) and (b) the generators obtained by refining the cell complex
only in a neighborhood of the generators. 145

4.13 The H1 and H2 generators computed on the Skull dataset. In (a) the orig-
inal dataset, in (b) and (c) the H1 and H2 generators computed at full
resolution and in (d) the H1 generators extracted at variable resolution
and visualized inside the extracted cell complex. 145

4.14 An example of simplification process consisting of two elementary exci-
sions and an edge contraction. 147

200

4.15 An example of HSC built from the simplification process illustrated in
Figure 4.14. 148

5.1 The MIG computed on the terrain dataset shown in Figure 5.2(b). The
nodes of the graph are the maxima (red nodes), saddles (green nodes)
and minima (blue nodes) of the scalar field function. Arcs (black lines)
connect two nodes if there exist a separatrix line connecting the corre-
sponding critical points. Nodes corresponding to maxima are enhanced
with the geometrical representation of the corresponding descending 2-
cells (relation depicted with red lines) while minima nodes refer to the
ascending 2-cells (relation depicted with blue lines). 158

5.2 A Forman gradient defined on a simplicial complex (a) and the 1-skeleton
of its Morse-Smale complex (b). Effects of topological simplification
performed on the 1-skeleton of the Morse-Smale complex (c). Note that
function values (height values of the terrain) are not modified by the topo-
logical simplification; the simplified 1-skeleton represents the two main
peaks and the pit only. 160

5.3 Effect of the 1-cancellation(σ, τ) on a Forman gradient V defined on a 2-
dimensional simplicial complex, The original V (left side) has two critical
triangles τ and τ ′ (in red) and one critical edge σ (in green). Red arrows
indicate the V -path involved in the simplification. 161

5.4 Example of a 1-cancellation(σ, τ) operator. Red dots correspond to max-
ima, purple dots to 2-saddles, green dots to 1-saddles. Dotted lines corre-
sponds to the arcs of the MIG. 161

5.5 Morse Incidence Graph (a) and Forman gradient (b) before and after the
1-cancellation(σ, τ) operator and (c) MIG computed from the Forman
gradient. Green edges denote 1-saddles and purple triangles denote 2-
saddles. In (b), simplices forming the V -paths are depicted with green
(edges) and purple (triangles) dots. Arrows between two dots indicate a
gradient pair, while a straight line between two dots indicates the inci-
dence relation between the corresponding simplices. 162

5.6 Examples of a 1-remove(σ, τ) operator. Red points correspond to max-
ima, purple points to 2-saddles, green points to 1-saddles. Dotted lines
corresponds to the arcs of the MIG. 164

5.7 1-remove(σ, τ) operator not introducing any shared V -path. 165

5.8 1-cancellation(σ, τ) operator introducing a shared V -path. 165

5.9 Shared V -path identified (a) and disambiguated inserting dummy critical
simplices σ1 and τ1 (b). 166

201

5.10 Example of obstructions preventing the removal of a dummy critical pair.
Red tetrahedra correspond to maxima, purple triangles to 2-saddles, green
edges are 1-saddles and blue spheres correspond to minima. Red, pur-
ple, green and blue dots correspond to (non critical) tetrahedra, trian-
gles, edges and vertices, respectively. The white triangle and edge are
the dummy critical simplices. 169

5.11 Nodes deleted by the remove-based (columns on the right) and the
cancellation-based (columns on the left) algorithms using different sim-
plification errors. 170

5.12 Topologically-consistent simplification of the FUEL, BUCKY, NEGHIP
and HYDROGEN. The original scalar field (a) and the shared paths de-
picted in red (b). The original 1-skeleton of the MS complex (c) and
its simplified version (d) computed with a persistence threshold of 0.01%
with respect to the maximum persistence for FUEL, 0.2 for BUCKY and
HYDROGEN and 0.3% for NEGHIP. 171

6.1 A simplicial complex Σ (a) and its Alexander dual Σ∗ (b). 177

6.2 An acyclic matching defined on a simplicial complex and inducing a per-
fect discrete Morse function. 181

202

List of Tables

1.1 Modifications of (k − 1)- and k-bases in which matrix Dk is expressed
required by the operations performed during the SNF reduction. 32

2.1 Dataset used and storage cost for encoding the corresponding simplicial
complex through IA∗, IG and Simplex Tree (ST) data structures. 50

2.2 Summary of the reviewed algorithms. For each of them the expected input
and the worst time complexity are indicated. Note that |X| denotes the
cardinality of set X , and X0 is the set of the vertices of X 86

3.1 Memory consumption and timings obtained computing the discrete Morse
complex with our library (IA∗, IA∗p) and with Perseus (IG). The Space
column indicates the memory consumption obtained running the three
programs; Σ and V indicate the memory required by storing the simpli-
cial complex and the Forman gradient, respectively. Column run. indi-
cates the total memory consumption at runtime. The Time columns indi-
cate the time needed to compute the discrete Morse complex; timings are
reported in seconds (s), minutes (m) and hours (h). Some runs went out
of memory (indicated with -) and some other have been stopped when the
computation time was above 200 hours (indicated with >200h). 110

3.2 Memory consumption and timings obtained computing the Forman gra-
dient with our library (IA∗, IA∗p) and with Perseus (IG) and computing
the persistent homology with Gudhi library (ST). The Space column
indicates the memory consumption obtained running the four programs.
Column run. indicates the total memory consumption at runtime. The
Time columns indicate the time needed to compute the discrete Morse
complex; timings are reported in seconds (s), minutes (m) and hours (h).
Some runs went out of memory (indicated with -) and some other have
been stopped when the computation time was above 200 hours (indicated
with >200h). 111

203

4.1 Four 2D shapes and two volumetric datasets used in our experiments. The
columns from left to right indicate: the name of the dataset (Dataset),
the number of the top cells in the datasets (Cells), the storage cost of
the original cell complex (Complex cost), the storage cost of the HHCC
(HHCC cost), the Betti numbers (Homology). 140

4.2 Experimental results obtained by refining four 2D shapes and two volu-
metric datasets and by computing homology generators on them through
the Smith Normal Form (SNF) reduction. The columns from left to right
indicate: the name of the dataset (Dataset), time required to compute the
homology generators on the base complex (SNF Time), the time needed
to extract the complex at full resolution and to expand all the generators
(Tot Ref Time), the number of refinements and the time needed to extract
the complex and the geometry of the generators at uniform level of detail
(Uniform Ref. and Uniform Time) and the number of refinements and the
time needed to extract the complex and the generators concentrating the
resolution only in the neighborhood of the generators (Generators Ref.)
and (Generators Time). The time is expressed in seconds. 144

5.1 Evaluation on 3-dimensional simplicial complexes of the storage costs
using the DMIG compared to the extended MIG and the Forman gradi-
ent. For each dataset, we indicate the number of vertices and tetrahedra
(columns Σ0 and Σ3), the number of critical simplices (#C) and the com-
pression factor of the DMIG with respect to the MIG and the Forman
gradient. 159

5.2 Evaluation of the preprocessing step and the remove-based simplification.
For each dataset we indicate, the original size and the number of vertices,
tetrahedra and critical points (columns Size, |Σ0|, |Σ3| and #C, respec-
tively) in the tetrahedral mesh. In column Preprocessing, we show the
number of critical points introduced during the preprocessing step and
the timings for: identifying the shared V -paths, insert the critical points
and remove them. Column Simplification shows the total number of sim-
plifications performed and the time required by the algorithm. Column
Mem. Peak indicates the maximum amount of memory used. 170

204

Bibliography

[Ack87] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.

[AFTV12] R. Ayala, D. Fernández-Ternero, and J. A. Vilches. Perfect discrete Morse
functions on 2-complexes. Pattern Recogn. Lett., 33(11):1495–1500, Au-
gust 2012.

[Ago05] M. K. Agoston. Computer Graphics and Geometric Modeling: Mathe-
matics. Springer Verlag London Ltd., 2005.

[AH35] P. Alexandroff and H. Hopf. Topologie I, volume 1035. Berlin, 1935.

[AKL16] M. Allili, T. Kaczynski, and C. Landi. Reducing complexes in multidi-
mensional persistent homology theory. Journal of Symbolic Computation,
2016.

[AKLM15] M. Allili, T. Kaczynski, C. Landi, and F. Masoni. A new matching algo-
rithm for multidimensional persistence. CoRR, abs/1511.05427v1, 2015.

[ALS11] D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for rep-
resenting and simplifying simplicial complexes in high dimensions. In
Proceedings of the 27th ACM Symposium on Computational Geometry,
Paris, France, June 13-15, 2011, pages 501–509, 2011.

[Art91] M. Artin. Algebra. Prentice Hall, 1991.

[BADSM08] M. Baba-Ali, G. Damiand, X. Skapin, and D. Marcheix. Discrete Geom-
etry for Computer Imagery: 14th IAPR International Conference, DGCI
2008, Lyon, France, April 16-18, 2008. Proceedings, chapter Insertion
and Expansion Operations for n-Dimensional Generalized Maps, pages
141–152. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[Ban67] T. Banchoff. Critical points and curvature for embedded polyhedra. J. of
Differential Geometry, 1:245–256, 1967.

[Ban70] T. Banchoff. Critical points and curvature for embedded polyhedral sur-
faces. American Mathematical Monthly, 77(5):475–485, 1970.

[BCA+11] D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Léon, L. De Flori-
ani, and F. Hétroy. An iterative algorithm for homology computation on
simplicial shapes. Computer-Aided Design, 43(11):1457 – 1467, 2011.

205

[BCC+12] O. Busaryev, S. Cabello, C. Chen, T. K. Dey, and Y. Wang. Annotat-
ing simplices with a homology basis and its applications. In Algorithm
Theory–SWAT 2012, pages 189–200. Springer Verlag, 2012.

[BDF+08] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi,
L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-
topological properties of real functions. ACM Computing Surveys,
40(4):Article 12, 2008.

[BDM13] J.-D. Boissonnat, T. K. Dey, and C. Maria. The compressed annotation
matrix: An efficient data structure for computing persistent cohomology.
In Algorithms–ESA 2013, pages 695–706. Springer Verlag, 2013.

[BDMZ12] P. Brendel, P. Dłotko, M. Mrozek, and N. Żelazna. Homology computa-
tions via acyclic subspace. In Proceedings of the 4th international con-
ference on Computational Topology in Image Context, CTIC’12, pages
117–127, Berlin, Heidelberg, 2012. Springer Verlag.

[BEHP03] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-
resolution data structure for two-dimensional Morse functions. In Proc.
IEEE Visualization 2003, pages 139–146. IEEE Computer Society, 2003.

[BEHP04] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topolog-
ical hierarchy for functions on triangulated surfaces. IEEE Transactions
on Visualization and Computer Graphics, 10(4):385–396, July/August
2004.

[BEK10] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing robustness and
persistence for images. IEEE Transactions on Visualization and Com-
puter Graphics, 16(6):1251–1260, 2010.

[BFRDon] D. Bolognini, U. Fugacci, M. E. Rossi, and E. De Negri. Betti splittings
for triangulated manifolds, In preparation.

[BHS80] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of
polyhedra in geometric modelling. In K.W.Brodlie, editor, Mathematical
Methods in Computer Graphics and Design, pages 123–141. Academic
Press, 1980.

[BKR14a] U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: Com-
puting persistent homology in chunks. In Peer-Timo Bremer, Ingrid
Hotz, Valerio Pascucci, and Ronald Peikert, editors, Topological Meth-
ods in Data Analysis and Visualization III, Mathematics and Visualiza-
tion, pages 103–117. Springer International Publishing, 2014.

[BKR14b] U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of
persistent homology. In ALENEX’14, pages 31–38, 2014.

[BKRW14] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT - Persistent
Homology Algorithms Toolbox. In Hoon Hong and Chee Yap, editors,

206

Mathematical Software – ICMS 2014, volume 8592 of Lecture Notes in
Computer Science, pages 137–143. Springer Berlin Heidelberg, 2014.

[BL14] B. Benedetti and F. H. Lutz. Random discrete Morse theory and a new
library of triangulations. Experimental Mathematics, 23(1):66–94, 2014.

[BM12] J.-D. Boissonnat and C. Maria. The Simplex Tree: an efficient data struc-
ture for general simplicial complexes. In Algorithms–ESA 2012, pages
731–742. Springer, 2012.

[BM14] J.-D. Boissonnat and C. Maria. Computing persistent homology with var-
ious coefficient fields in a single pass. In Andreas S. Schulz and Dorothea
Wagner, editors, Algorithms - ESA 2014, volume 8737 of Lecture Notes
in Computer Science, pages 185–196. Springer Berlin Heidelberg, 2014.

[Bol15] D. Bolognini. Betti splittings of monomial ideals and simplicial com-
plexes. PhD thesis, University of Genova, Italy, 2015.

[BPH05] P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hier-
archical topological models. In A.G. Belyaev, A.A. Pasko, and M. Spag-
nuolo, editors, Proc. Int. Conf. on Shape Modeling and Applications 2005
(SMI ’05), pages 300–309, Los Alamitos, California, 2005. IEEE Com-
puter Society Press.

[BPS98] C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topol-
ogy for structural enhancement. In Proc. IEEE Visualization’98, pages
51–58. IEEE Computer Society, 1998.

[BR03] S. Buoncristiano and C. Rourke. Fragments of geometric topology from
the sixties. University of Warwick, Mathematics Institute, 2003.

[Can12a] D. Canino. The Mangrove TDS Library: a C++ tool for the fast proto-
typing of topological data structures, http://mangrovetds.sourceforge.net,
2012.

[Can12b] D. Canino. Tools for Modeling and Analysis of Non-manifold shapes.
PhD thesis, University of Genova, Italy, 2012.

[CBK09] M. K. Chung, P. Bubenik, and P. T. Kim. Persistence diagrams of cortical
surface data. In Information Processing in Medical Imaging, pages 386–
397. Springer, 2009.

[CCL03] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based
upon the Morse-Smale complex and the Connolly function. In Proc. 9th
Annual Symposium on Computational Geometry, pages 351–360, New
York, USA, 2003. ACM Press.

[ČD12] L. Čomić and L. De Floriani. Topological operators on cell complexes
in arbitrary dimensions. In Computational Topology in Image Context,
pages 98–107. Springer Verlag, 2012.

207

[CD13] D. Canino and L. De Floriani. Representing simplicial complexes with
Mangrove. Proceedings of the 22nd Iinternational Meshing Roundtable,
pages 465–483, 2013.

[CDEG10] E. W. Chambers, V. De Silva, J. Erickson, and R. Ghrist. Vietoris-Rips
complexes of planar point sets. Discrete & Computational Geometry,
44(1):75–90, 2010.

[ČDI12] L. Čomić, L. De Floriani, and F. Iuricich. Dimension-independent multi-
resolution Morse complexes. Computers & Graphics, 36(5):541–547,
2012.

[CDI13] L. Comic, L. De Floriani, and F. Iuricich. Modeling three-dimensional
Morse and Morse-Smale complexes. In Innovations for Shape Analysis,
Models and Algorithms, pages 3–34. Springer, 2013.

[ČDMI14] L. Čomić, L. De Floriani, P. Magillo, and F. Iuricich. Morphological
Modeling of Terrains and Volume Data. Springer Briefs in Computer
Science. Springer, 2014.

[CDW11] D. Canino, L. De Floriani, and K. Weiss. IA*: An adjacency-based rep-
resentation for non-manifold simplicial shapes in arbitrary dimensions.
Computers & Graphics, 35(3):747–753, 2011.

[CF08] C. Chen and D. Freedman. Quantifying homology classes. In Proceed-
ings of the International Symposium on Theoretical Aspects of Computer
Science (STACS), page 169–180, 2008.

[CFG06] A. Cerri, M. Ferri, and D. Giorgi. Retrieval of trademark images by means
of size functions. Graphical Models, 68(5):451–471, 2006.

[CH13] C. J. Carstens and K. J. Horadam. Persistent homology of collaboration
networks. Mathematical Problems in Engineering, 2013.

[CIDZ08] G. Carlsson, T. Ishkhanov, V. De Silva, and A. J. Zomorodian. On the
local behavior of spaces of natural images. International journal of com-
puter vision, 76(1):1–12, 2008.

[CK11] C. Chen and M. Kerber. Persistent homology computation with a twist.
In Proceedings 27th European Workshop on Computational Geometry,
2011.

[CK13] C. Chen and M. Kerber. An output-sensitive algorithm for persistent ho-
mology. Comput. Geom. Theory Appl., 46(4):435–447, May 2013.

[CLB11] C. Correa, P. Lindstrom, and Peer-Timo Bremer. Topological spines: A
structure-preserving visual representation of scalar fields. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):1842–1851, 2011.

[ČomićD11] L. Čomić and L. De Floriani. Dimension-independent simplification and
refinement of Morse complexes. Graphical Models, 73(5):261–285, Sep
2011.

208

[ČomićDI13] L. Čomić, L. De Floriani, and F. Iuricich. Simplification operators
on a dimension-independent graph-based representation of Morse com-
plexes. In C. L. Luengo Hendriks, G. Borgefors, and R. Strand, editors,
ISMM, volume 7883 of Lecture Notes in Computer Science, pages 13–24.
Springer, 2013.

[ČomićDIF14] L. Čomić, L. De Floriani, F. Iuricich, and U. Fugacci. Topological modi-
fications and hierarchical representation of cell complexes in arbitrary di-
mensions. Computer Vision and Image Understanding, 121:2–12, 2014.

[Con86] M. L. Connolly. Measurement of protein surface shape by solid angles.
J. of Molecular Graphics, 4(1):3 – 6, 1986.

[CSZ09] G. Carlsson, G. Singh, and A. J. Zomorodian. Computing multidimen-
sional persistence. In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra,
editors, Algorithms and Computation, volume 5878 of Lecture Notes in
Computer Science, pages 730–739. Springer Berlin Heidelberg, 2009.

[CZ09] G. Carlsson and A. J. Zomorodian. The theory of multidimensional per-
sistence. Discrete & Computational Geometry, 42(1):71–93, 2009.

[DAE+08] M.-L. Dequeant, S. Ahnert, H. Edelsbrunner, T. Fink, E. Glynn, G. Hat-
tem, A. Kudlicki, Y. Mileyko, J. Morton, A. Mushegian, et al. Compari-
son of pattern detection methods in microarray time series of the segmen-
tation clock. PLoS One, 3(8):e2856, 2008.

[dBT11] M. de Berg and C. Tsirogiannis. Exact and approximate computations
of watersheds on triangulated terrains. In Proc. 19th ACM SIGSPATIAL
Int. Conf. on Advances in Geographic Information Systems, pages 74–83,
2011.

[DC04] V. De Silva and G. Carlsson. Topological estimation using witness com-
plexes. In Proceedings of the First Eurographics Conference on Point-
Based Graphics, SPBG’04, pages 157–166, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association.

[DDM+03a] E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo.
Morphology-driven simplification and multiresolution modeling of ter-
rains. In E. Hoel and P. Rigaux, editors, Proc. ACM GIS 2003 - The 11th
Int. Symposium on Advances in Geographic Information Systems, pages
63–70. ACM Press, 2003.

[DDM03b] E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological analy-
sis and characterization of discrete scalar fields. In T. Asano, R. Klette,
and C. Ronse, editors, Geometry, Morphology, and Computational Imag-
ing, volume 2616 of Lecture Notes in Computer Science, pages 386–402.
Springer Verlag, 2003.

[DDM+06] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo, and D. Sobrero. Level-
of-detail for data analysis and exploration: A historical overview and
some new perspectives. Computers & Graphics, 30(3):334–344, 2006.

209

[DDMP03] E. Danovaro, L. De Floriani, P. Magillo, and E. Puppo. Data structures
for 3D multi-tessellations: an overview. In Data Visualization: The State
of the Art, pages 239–256, 2003.

[De 03] V. De Silva. A weak definition of Delaunay triangulation. Technical
report, Manuscript, Dept. Mathematics, 2003.

[DE93] C. J. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti
numbers of simplicial complexes, 1993.

[DE95] C. J. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti
numbers of simplicial complexes on the 3-sphere. Computer Aided Geo-
metric Design, 12(7):771–784, 1995.

[DEGN99] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology
preserving edge contraction. Publ. Inst. Math.(Beograd)(NS), 66(80):23–
45, 1999.

[DFI15] L. De Floriani, U. Fugacci, and F. Iuricich. Homological shape analysis
through discrete Morse theory. In M. Breuß, A. Bruckstein, P. Mara-
gos, and S. Wuhrer, editors, Perspectives in Shape Analysis - Dagstuhl
Seminar on New Perspectives in Shape Analysis, Mathematics and Visu-
alization. Springer Berlin Heidelberg, 2015.

[DFIM15] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse complexes
for shape segmentation and homological analysis: Discrete models and
algorithms. Computer Graphics Forum, 2015.

[DFW12] T. K. Dey, F. Fan, and Y. Wang. Computing topological persistence for
simplicial maps. arXiv preprint arXiv:1208.5018, 2012.

[DFW13] T. K. Dey, F. Fan, and Y. Wang. Graph induced complex on point data.
In Proceedings of the Twenty-ninth Annual Symposium on Computational
Geometry, SoCG ’13, pages 107–116, New York, NY, USA, 2013. ACM.

[DG07a] V. De Silva and R. Ghrist. Coverage in sensor networks via persistent
homology. Algebraic & Geometric Topology, 7(339-358):24, 2007.

[DG07b] V. De Silva and R. Ghrist. Homological sensor networks. Notices of the
American Mathematical Society, 54, 2007.

[DGDP12] G. Damiand, R. Gonzalez-Diaz, and S. Peltier. Removal Operations in
nD Generalized Maps for Efficient Homology Computation. In Proc. of
4th International Workshop on Computational Topology in Image Context
(CTIC), volume 7309 of Lecture Notes in Computer Science, pages 20–
29. Springer Berlin/Heidelberg, 2012.

[DGH04] L. De Floriani, D. Greenfieldboyce, and A. Hui. A data structure for
non-manifold simplicial d-complexes. In Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry processing, pages
83–92. ACM, 2004.

210

[DH05] L. De Floriani and A. Hui. Data structures for simplicial complexes: An
analysis and a comparison. In Mathieu Desbrun and Helmut Pottmann,
editors, Proc. 3rd Eurographics Symposium on Geometry Processing,
volume 255 of ACM Int. Conf. Proceeding Series, pages 119–128, Aire-
la-Ville, Switzerland, 2005. Eurographics Association.

[DH07] L. De Floriani and A. Hui. Shape representations based on simplicial and
cell complexes. In Eurographics 2007 - State of the Art Reports, Prague,
Czech Republic, September 3-7, 2007, pages 63–87, 2007.

[DHPC10] L. De Floriani, A. Hui, D. Panozzo, and D. Canino. A dimension-
independent data structure for simplicial complexes. Proceedings of the
19th International Meshing Roundtable, pages 403–420, 2010.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[DKMW11] P. Dłotko, T. Kaczynski, M. Mrozek, and T. Wanner. Coreduction ho-
mology algorithm for regular CW-complexes. Discrete & Computational
Geometry, 46(2):361–388, 2011.

[DL03] G. Damiand and P. Lienhardt. Removal and contraction for n-dimensional
generalized maps. In DGCI, volume 2886 of Lecture Notes in Computer
Science, pages 408–419. Springer, 2003.

[DM02] L. De Floriani and P. Magillo. Multiresolution mesh representation: mod-
els and data structures. In Tutorials on Multiresolution in Geometric Mod-
elling, pages 363–418. Springer-Verlag, 2002.

[DMMP03] L. De Floriani, M. M. Mesmoudi, F. Morando, and E. Puppo. Decom-
posing non-manifold objects in arbitrary dimensions. Graphical Models,
65(1):2–22, 2003.

[DMVJ11] V. De Silva, D. Morozov, and M. Vejdemo-Johansson. Dualities in per-
sistent (co) homology. Inverse Problems, 27(12):124003, 2011.

[DSNW13] H. Doraiswamy, N. Shivashankar, V. Natarajan, and Y. Wang. Topologi-
cal saliency. Computers & Graphics, 37(7):787–799, 2013.

[DW12] P. Dłotko and H. Wagner. Computing homology and persistent homology
using iterated Morse decomposition. arXiv preprint arXiv:1210.1429,
2012.

[DW+14] P. Dłotko, H. Wagner, et al. Simplification of complexes for persis-
tent homology computations. Homology, Homotopy and Applications,
16(1):49–63, 2014.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Ver-
lag, Berlin, 1987.

211

[EH08] H. Edelsbrunner and J. Harer. Persistent homology - a survey. Contem-
porary mathematics, 453:257–282, 2008.

[EH10] H. Edelsbrunner and J. Harer. Computational topology: an introduction.
American Mathematical Soc., 2010.

[EHNP03] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In Proc. 19th ACM Sympo-
sium on Computational Geometry, pages 361–370, 2003.

[EHZ01] H. Edelsbrunner, J. Harer, and A. J. Zomorodian. Hierarchical Morse
complexes for piecewise linear 2-manifolds. In Proc. 17th ACM Sympo-
sium on Computational Geometry, pages 70–79, 2001.

[Eis13] D. Eisenbud. Commutative Algebra: with a view toward algebraic geom-
etry, volume 150. Springer Science & Business Media, 2013.

[EKS83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a
set of points in the plane. IEEE Transactions on Information Theory,
29(4):551–559, 1983.

[ELZ02] H. Edelsbrunner, D. Letscher, and A. J. Zomorodian. Topological
persistence and simplification. Discrete & Computational Geometry,
28(4):511–533, 2002.

[ER98] J. A. Eagon and V. Reiner. Resolutions of Stanley-Reisner rings and
Alexander duality. Journal of Pure and Applied Algebra, 130(3):265–
275, 1998.

[EW79] C. M. Eastman and K. Weiler. Geometric Modeling Using the Euler Op-
erators. In 1st Annual Conference on Computer Graphics in CAD/CAM
Systems, MIT, May 1979.

[Fel15] R. Fellegara. A spatio-topological approach to the representation of sim-
plicial complexes and beyond. PhD thesis, University of Genova, Italy,
2015.

[FID14] U. Fugacci, F. Iuricich, and L. De Floriani. Efficient computation of sim-
plicial homology through acyclic matching. In Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2014 16th International
Symposium on, pages 587–593, Sept 2014.

[FIDon] U. Fugacci, F. Iuricich, and L. De Floriani. Computing discrete Morse
complexes through reductions and coreductions, In preparation.

[FlDFW14] R. Fellegara, F. luricich, L. De Floriani, and K. Weiss. Efficient computa-
tion and simplification of discrete Morse decompositions on triangulated
terrains. In Proceedings of the 22Nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL ’14, pages 223–232, New York, NY, USA, 2014. ACM.

212

[For98] R. Forman. Morse theory for cell complexes. Advances in Mathematics,
134(1):90–145, 1998.

[For02] R. Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin,
48:35, 2002.

[FP99] P. Frosini and M. Pittore. New methods for reducing size graphs. Inter-
national journal of computer mathematics, 70(3):505–517, 1999.

[Fug12] U. Fugacci. Constructive methods for the computation of simplicial ho-
mology. Master Thesis, 2012.

[GBHP08] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A practical
approach to Morse-Smale complex computation: Scalability and gen-
erality. IEEE Transactions on Visualization and Computer Graphics,
14(6):1619–1626, 2008.

[GBHP11] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. Practical consid-
erations in Morse-Smale complex computation. In V. Pascucci, X. Tric-
oche, H. Hagen, and J. Tierny, editors, Topological Methods in Data
Analysis and Visualization: Theory, Algorithms, and Applications, Math-
ematics and Visualization, pages 67–78. Springer Verlag, Heidelberg,
2011.

[GBP12] A. Gyulassy, P.-T. Bremer, and V. Pascucci. Computing Morse-Smale
complexes with accurate geometry. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2014–2022, 2012.

[GDN+07] A. Gyulassy, M. A. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically clean distance
fields. IEEE Transactions on Visualization and Computer Graphics,
13(6):1432–1439, 2007.

[Ghr08] R. Ghrist. Barcodes: the persistent topology of data. Bulletin of the
American Mathematical Society, 45(1):61–75, 2008.

[Gie96] M. Giesbrecht. Probabilistic computation of the Smith Normal Form of
a sparse integer matrix. In Algorithmic Number Theory, pages 173–186.
Springer Verlag, 1996.

[GKK+12] A. Gyulassy, N. Kotava, M. Kim, C.D. Hansen, H. Hagen, and V. Pas-
cucci. Direct feature visualization using Morse-Smale complexes. IEEE
Transactions on Visualization and Computer Graphics, 18(9):1549–
1562, Sept 2012.

[GNP+05] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.
Topology-based simplification for feature extraction from 3D scalar
fields. In Proc. IEEE Visualization’05, pages 275–280. ACM Press, 2005.

213

[GNPH07] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient com-
putation of Morse-Smale complexes for three-dimensional scalar func-
tions. IEEE Transactions on Visualization and Computer Graphics,
13(6):1440–1447, 2007.

[GO08] L. J. Guibas and S. Y. Oudot. Reconstruction using witness complexes.
Discrete & Computational geometry, 40(3):325–356, 2008.

[Gom04] A. J. P. Gomes. Euler operators for stratified objects with incomplete
boundaries. In Proceedings of the ninth ACM symposium on Solid model-
ing and applications, SM ’04, pages 315–320, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[GRSW13] D. Günther, J. Reininghaus, H.-P. Seidel, and T. Weinkauf. Notes on the
simplification of the Morse-Smale complex. In Proc. TopoInVis, Davis,
U.S.A., March 2013.

[GRWH12] D. Günther, J. Reininghaus, H. Wagner, and I. Hotz. Efficient computa-
tion of 3D Morse-Smale complexes and persistent homology using dis-
crete Morse theory. The Visual Computer, 28(10):959–969, 2012.

[GSW12] D. Günther, H.-P. Seidel, and T. Weinkauf. Extraction of dominant ex-
tremal structures in volumetric data using separatrix persistence. Comput.
Graph. Forum, 31(8):2554–2566, 2012.

[Hat02] A. Hatcher. Algebraic topology. https://www.math.cornell.
edu/~hatcher/AT/ATpage.html, 2002.

[Hil90] D. Hilbert. Ueber die theorie der algebraischen formen. Mathematische
Annalen, 36(4):473–534, 1890.

[HM91] J. L. Hafner and K. S. McCurley. Asymptotically fast triangularization
of matrices over rings. SIAM Journal on Computing, 20(6):1068–1083,
1991.

[HMM+10] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda,
and P. Dłotko. The efficiency of a homology algorithm based on discrete
Morse theory and coreductions. In Proceedings 3rd International Work-
shop on Computational Topology in Image Context (CTIC 2010). Image
A, volume 1, pages 41–47, 2010.

[HMMN14] S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda. Discrete Morse
theoretic algorithms for computing homology of complexes and maps.
Foundations of Computational Mathematics, 14(1):151–184, 2014.

[HMR09] D. Horak, S. Maletić, and M. Rajković. Persistent homology of com-
plex networks. Journal of Statistical Mechanics: Theory and Experiment,
2009(03):P03034, 2009.

214

https://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://www.math.cornell.edu/~hatcher/AT/ATpage.html

[Hoc77] M. Hochster. Cohen-Macaulay rings, combinatorics, and simplicial com-
plexes. In Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman,
Okla., 1975), pages 171–223, 1977.

[Hud69] J. Hudson. Piecewise linear topology. New York, 1969.

[ID14] F. Iuricich and L. De Floriani. A combined geometrical and topological
simplification hierarchy for terrain analysis. In Proceedings of the 22Nd
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’14, pages 493–496, New York, NY,
USA, 2014. ACM.

[IFD15] F. Iuricich, U. Fugacci, and L. De Floriani. Topologically-consistent sim-
plification of discrete Morse complex. Computers & Graphics, 51:157 –
166, 2015. Honorable Mention at SMI 2015.

[Iur14] F. Iuricich. Multi-resolution shape analysis based on discrete Morse de-
compositions. PhD thesis, University of Genova, Italy, 2014.

[JM14] M. Juda and M. Mrozek. CAPD::redhom v2 - homology software based
on reduction algorithms. In Hoon Hong and Chee Yap, editors, Mathe-
matical Software – ICMS 2014, volume 8592 of Lecture Notes in Com-
puter Science, pages 160–166. Springer Berlin Heidelberg, 2014.

[JP06] Michael Joswig and Marc E. Pfetsch. Computing optimal Morse match-
ings. SIAM J. Discret. Math., 20(1):11–25, January 2006.

[KB79] R. Kannan and A. Bachem. Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matrix. SIAM Journal on
Computing, 8(4):499–507, 1979.

[KKM05] H. King, K. Knudson, and N. Mramor. Generating discrete Morse func-
tions from point data. Experimental Mathematics, 14(4):435–444, 2005.

[KMM04] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational homology,
volume 157. Springer Verlag, 2004.

[KMS98] T. Kaczynski, M. Mrozek, and M. Slusarek. Homology computation by
reduction of chain complexes. Computers & Mathematics with Applica-
tions, 35(4):59–70, 1998.

[KSSM13] K. F. Kee, L. Sparks, D. C. Struppa, and M. Mannucci. Social groups, so-
cial media, and higher dimensional social structures: A simplicial model
of social aggregation for computational communication research. Com-
munication Quarterly, 61(1):35–58, 2013.

[LB13] F. H. Lutz and B. Benedetti. Knots in collapsible and non-collapsible
balls. Electr. J. Comb., 20(3):P31, 2013.

215

[LL01] S. H. Lee and K. Lee. Partial entity structure: a fast and compact non-
manifold boundary representation based on partial topological entities. In
Proceedings Sixth ACM Symposium on Solid Modeling and Applications,
pages 159–170. Ann Arbor, Michigan, June 2001.

[LLT03] T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions
for 2-manifolds. Computational Geometry, 26(3):221 – 233, 2003.

[LLT04] T. Lewiner, H. Lopes, and G. Tavares. Applications of Forman’s discrete
Morse theory to topology visualization and mesh compression. IEEE
Transactions on Visualization and Computer Graphics, 10(5):499–508,
2004.

[LPT+03] H. Lopes, S. Pesco, G. Tavares, M. Maia, and A. Xavier. Handlebody
Representation for Surfaces and Its Applications to Terrain Modeling.
International Journal of Shape Modeling, 9(1):61–77, 2003.

[LSVJ11] D. Lipsky, P. Skraba, and M. Vejdemo-Johansson. A spectral sequence
for parallelized persistence. CoRR, abs/1112.1245, 2011.

[LT97] H. Lopes and G. Tavares. Structural Operators for Modeling 3-Manifolds.
In Proceedings Fourth ACM Symposium on Solid Modeling and Applica-
tions, pages 10–18. ACM Press, May 1997.

[LW69] A. T. Lundell and S. Weingram. The topology of CW complexes. Van
Nostrand Reinhold Company, 1969.

[LZ14] R. H. Lewis and A. J. Zomorodian. Multicore homology via Mayer Vi-
etoris. CoRR, abs/1407.2275, 2014.

[Man88] M. Mantyla. An Introduction to Solid Modeling. Computer Science Press,
1988.

[Mas91] W. S. Massey. A basic course in algebraic topology, volume 127.
Springer Verlag New York, 1991.

[Mas93] H. Masuda. Topological Operators and Boolean Operations for Complex-
Based Non-Manifold Geometric Models. Computer-Aided Design,
25(2):119–129, feb 1993.

[Mat02] Y. Matsumoto. An Introduction to Morse Theory, volume 208 of Trans-
lations of Mathematical Monographs. American Mathematical Society,
2002.

[MB90] F. Meyer and S. Beucher. Morphological segmentation. J. of Visual Com-
munication and Image Representation, 1:21–45, 1990.

[MB09] M. Mrozek and B. Batko. Coreduction homology algorithm. Discrete &
Computational Geometry, 41(1):96–118, 2009.

216

[MBGY14] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec. The GUDHI
library: simplicial complexes and persistent homology. In Hoon Hong
and Chee Yap, editors, Mathematical Software – ICMS 2014, volume
8592 of Lecture Notes in Computer Science, pages 167–174. Springer
Berlin Heidelberg, 2014.

[McC01] J. McCleary. A user’s guide to spectral sequences. Cambridge University
Press, 2001.

[MDD+09] P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A
discrete approach to compute terrain morphology. Computer Vision and
Computer Graphics Theory and Applications, 21:13–26, 2009.

[MDI13] P. Magillo, L. De Floriani, and F. Iuricich. Morphologically-aware elim-
ination of flat edges from a TIN. In Proc. 21th ACM SIGSPATIAL Int.
Conf. on Advances in Geographic Information Systems, pages 244–253,
2013.

[Mey94] F. Meyer. Topographic distance and watershed lines. Signal Processing,
38:113–125, 1994.

[Mil63] J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

[MMS11] N. Milosavljević, D. Morozov, and P. Skraba. Zigzag persistent homol-
ogy in matrix multiplication time. In Proceedings of the twenty-seventh
Annual Symposium on Computational Geometry, pages 216–225. ACM,
2011.

[MN13] K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient
computation of persistent homology. Discrete & Computational Geome-
try, 50(2):330–353, 2013.

[MNV13] N. A. Murty, V. Natarajan, and S. Vadhiyar. Efficient homology compu-
tations on multicore and manycore systems. In High Performance Com-
puting (HiPC), 2013 20th International Conference on, pages 333–342.
IEEE, 2013.

[Mor12] D. Morozov. Dionysus library for computing persistent homology, 2012.

[MPZ08] M. Mrozek, P. Pilarczyk, and N. Żelazna. Homology algorithm based on
acyclic subspace. Comput. Math. Appl., 55(11):2395–2412, June 2008.

[MS82] M. Mantyla and R. Sulonen. Gwb: A Solid Modeler with Euler Opera-
tors. IEEE Computer Graphics and Applications, 2:17–31, 1982.

[MS05] E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume
227. Springer Science & Business Media, 2005.

[MSNK89] H. Masuda, K. Shimada, M. Numao, and S. Kawabe. A Mathematical
Theory and Applications of Non-Manifold Geometric Modeling. In IFIP
WG 5.2/GI International Symposium on Advanced Geometric Modeling

217

for Engineering Applications, pages 89–103, Berlin, Germany, nov 1989.
North-Holland.

[MSS06] M. A. Mannucci, L. Sparks, and D. C. Struppa. Simplicial models of
social aggregation I. arXiv preprint cs/0604090, 2006.

[MTCW10] S. Martin, A. Thompson, E. A. Coutsias, and J.-P. Watson. Topol-
ogy of cyclo-octane energy landscape. Journal of Chemical Physics,
132(23):234115, 2010.

[Mun84] J. R. Munkres. Elements of Algebraic Topology. Advanced book classics.
Perseus Books, 1984.

[MW99] A. Mangan and R. Whitaker. Partitioning 3D surface meshes using wa-
tershed segmentation. IEEE Transactions on Visualization and Computer
Graphics, 5(4):308–321, 1999.

[MW10] M. Mrozek and T. Wanner. Coreduction homology algorithm for inclu-
sions and persistent homology. Comput. Math. Appl., 60(10):2812–2833,
November 2010.

[Nan] V. Nanda. The Perseus software project for rapid computation of persis-
tent homology, http://www.math.rutgers.edu/ vidit/perseus/index.html.

[OPT+15] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington.
A roadmap for the computation of persistent homology. ArXiv e-prints,
June 2015.

[Pas04] V. Pascucci. Topology diagrams of scalar fields in scientific visualization.
In S. Rana, editor, Topological Data Structures for Surfaces, pages 121–
129. John Wiley & Sons Ltd, 2004.

[PS03] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Cambridge Uni-
versity Press, New York, NY, USA, 2003.

[Rei76] G. A. Reisner. Cohen-Macaulay quotients of polynomial rings. Advances
in Mathematics, 21(1):30 – 49, 1976.

[RGH+12] J. Reininghaus, D. Günther, I. Hotz, T. Weinkauf, and H.-P. Seidel. Com-
binatorial gradient fields for 2D images with empirically convergent sep-
aratrices. CoRR, abs/1208.6523, 2012.

[RL14] B. Rieck and H. Leitte. Structural analysis of multivariate point clouds
using simplicial chains. Computer Graphics Forum, 33(8):28–37, 2014.

[RM00] J. Roerdink and A. Meijster. The watershed transform: Definitions, algo-
rithms, and parallelization strategies. Fundamenta Informaticae, 41:187–
228, 2000.

[Rot70] J. J. Rotman. Notes on homological algebra. Van Nostrand Reinhold
mathematical studies. Van Nostrand Reinhold, 1970.

218

[RS99] J. Rubio and F. Sergeraert. Constructive algebraic topology. SIGSAM
Bull, pages 13–25, 1999.

[RS12] J. Rubio and F. Sergeraert. Constructive Homological Algebra and Ap-
plications. ArXiv e-prints, 2012.

[RWS11] V. Robins, P. J. Wood, and A. P. Sheppard. Theory and algorithms for con-
structing discrete Morse complexes from grayscale digital images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(8):1646–
1658, 2011.

[Sam05] H. Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[Sch05] B. Schneider. Extraction of hierarchical surface networks from bilinear
surface patches. Geographical Analysis, 37(2):244–263, 2005.

[SCP08] T. Sousbie, S. Colombi, and C. Pichon. The fully connected n-
dimensional skeleton: probing the evolution of the cosmic web. CoRR,
abs/0809.2423, 2008.

[SG98] Oliver G. Staadt and Markus H. Gross. Progressive tetrahedralizations.
In Proceedings of the Conference on Visualization ’98, VIS ’98, pages
397–402, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[SMN12] N. Shivashankar, S. Maadasamy, and V. Natarajan. Parallel computation
of 2D Morse-Smale complexes. IEEE Transactions on Visualization and
Computer Graphics, 18(10):1757–1770, 2012.

[SN12] N. Shivashankar and V. Natarajan. Parallel computation of 3D Morse-
Smale complexes. Computer Graphics Forum, 31(3):965–974, 2012.

[Soi04] P. Soille. Morphological Image Analysis: Principles and Applications.
Springer-Verlag, Berlin and New York, 2004.

[SS00] S. L. Stoev and W. Strasser. Extracting regions of interest applying a local
watershed transformation. In Proc. IEEE Visualization’00, pages 21–28.
ACM Press, 2000.

[Sta75] R. P. Stanley. Cohen-Macaulay rings and constructible polytopes. Bull.
Amer. Math. Soc., 81(1):133–135, 01 1975.

[Sto96] A. Storjohann. Near optimal algorithms for computing Smith normal
forms of integer matrices. In Proceedings of the 1996 international sym-
posium on Symbolic and algebraic computation, ISSAC ’96, pages 267–
274, New York, NY, USA, 1996. ACM.

[SW04] B. Schneider and J. Wood. Construction of metric surface networks from
raster-based DEMs. In S. Rana, editor, Topological Data Structures for
Surfaces, pages 53–70. John Wiley & Sons Ltd, 2004.

219

[Tau11] A. Tausz. PHOM: Persistent homology in R, Version 1.0. 1. 2011. Avail-
able at CRAN http://cran. r-project. org, 2011.

[TIKU95] S. Takahashi, T. Ikeda, T. L. Kunii, and M. Ueda. Algorithms for ex-
tracting correct critical points and constructing topological graphs from
discrete geographic elevation data. In Computer Graphics Forum, vol-
ume 14, pages 181–192, 1995.

[TVJA12] A. Tausz, M. Vejdemo-Johansson, and H. Adams. javaPlex: a research
platform for persistent homology. Book of Abstracts Minisymposium on
Publicly Available Geometric/Topological Software, 7, 2012.

[VCY12] G. Vegter, A. Chattopadhyay, and C. K. Yap. Certified computation of
planar Morse-Smale complexes. In Proceedings of the Twenty-eighth An-
nual Symposium on Computational Geometry, SoCG ’12, pages 259–268,
New York, NY, USA, 2012. ACM.

[vdWVE+11] R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. Jones, P. Pranav,
C. Park, W. A. Hellwing, B. Eldering, N. Kruithof, E. G. P. Bos, et al.
Alpha, Betti and the megaparsec universe: On the topology of the cos-
mic web. In Transactions on Computational Science XIV, pages 60–101.
Springer-Verlag, 2011.

[VJ12] M. Vejdemo-Johansson. GAP persistence - a computational topology
package for GAP. Book of Abstracts Minisymposium on Publicly Avail-
able Geometric/Topological Software, 43, 2012.

[VS91] L. Vincent and P. Soille. Watershed in digital spaces: An efficient al-
gorithm based on immersion simulation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(6):583–598, 1991.

[WAB+05] Y. Wang, P. K. Agarwal, P. Brown, H. Edelsbrunner, and J. Rudolph.
Coarse and reliable geometric alignment for protein docking. In In Pro-
ceedings of Pacific Symposium on Biocomputing, volume 10, pages 65–
75, 2005.

[WDFV11] K. Weiss, L. De Floriani, R. Fellegara, and M. Velloso. The PR-star
octree: a spatio-topological data structure for tetrahedral meshes. In GIS,
pages 92–101, 2011.

[WG09] T. Weinkauf and D. Günther. Separatrix persistence: Extraction of salient
edges on surfaces using topological methods. Comput. Graph. Forum,
28(5):1519–1528, 2009.

[WIFD13] K. Weiss, F. Iuricich, R. Fellegara, and L. De Floriani. A primal/dual rep-
resentation for discrete Morse complexes on tetrahedral meshes. Com-
puter Graphics Forum, 32(3):361–370, 2013.

[ZC05] A. J. Zomorodian and G. Carlsson. Computing persistent homology. Dis-
crete & Computational Geometry, 33(2):249–274, 2005.

220

[ZC08] A. J. Zomorodian and G. Carlsson. Localized homology. Computational
Geometry, 41(3):126–148, 2008.

[Zom05] A. J. Zomorodian. Topology for computing. Cambridge University Press,
2005.

[Zom10a] A. J. Zomorodian. Fast construction of the Vietoris-Rips complex. Com-
puter and Graphics, pages 263–271, 2010.

[Zom10b] A. J. Zomorodian. The Tidy Set: a minimal simplicial set for comput-
ing homology of clique complexes. In Proceedings of the 2010 Annual
Symposium on Computational Geometry, pages 257–266. ACM, 2010.

221

	Introduction
	Chapter Background Notions
	Simplicial and cell complexes
	Simplicial complexes
	Cell complexes and regular grids

	Simplicial and persistent homology
	Simplicial homology
	Persistent homology

	Morse and discrete Morse theory
	Morse theory
	Piecewise linear Morse theory and watershed transform
	Discrete Morse theory

	Chapter State of the Art
	Data structures for simplicial complexes
	Multi-resolution models
	Computing simplicial homology
	Classification
	Direct optimizations
	Coarsening and pruning approaches
	Distributed approaches
	Annotation-based approaches
	Software tools for homology and persistent homology computation

	Algorithms rooted in Morse and discrete Morse theories
	Classification
	Algorithms based on piecewise linear Morse theory and on watershed transform
	Algorithms rooted in discrete Morse theory
	Simplification of Morse and Morse-Smale complexes

	Concluding remarks

	Chapter Homology Computation through Discrete Morse Theory
	Discrete Morse complexes through reductions and coreductions
	Using coreduction sequences or reduction sequences
	Equivalence of reduction and coreduction sequences
	Interleaving reductions and coreductions

	Encoding of a simplicial complex endowed with a gradient vector field
	Compact encoding of a gradient vector field

	A coreduction-based algorithm for computing discrete Morse complexes
	Construction of a (filtered) gradient vector field
	Extraction of the boundary maps

	Experimental results
	Computing the discrete Morse complex
	Computing persistent homology

	Concluding remarks

	Chapter Homology Computation through Multi-resolution Models
	Topological operators for cell and simplicial complexes
	Operators for cell complexes
	Operators for simplicial complexes

	A general multi-resolution model
	Operators
	Multi-resolution cell complexes
	Selective refinement extraction

	Cellular homology computation through a multi-resolution model
	The Hierarchical Cell Complex (HCC)
	The Homology-preserving Hierarchical Cell Complex (HHCC)
	Homology computation through an HHCC

	Simplicial homology computation through a multi-resolution model
	The Hierarchical Simplicial Complex (HSC)
	The Homology-preserving Hierarchical Simplicial Complex (HHSC)
	Homology computation through an HHSC

	Concluding remarks

	Chapter Topologically-consistent Simplification of Discrete Morse Complexes
	Representing discrete Morse complexes
	Simplifying discrete Morse complexes
	Solving topological inconsistencies
	Shared V-paths and the remove operator
	Shared V-path disambiguation algorithm

	Experimental results
	Concluding remarks

	Chapter Relations between Perfect Discrete Morse Functions and Betti Splittings
	Background
	Perfect discrete Morse functions and homological splittings
	Perfect discrete Morse functions and Betti splittings
	Concluding remarks

	Concluding Remarks
	Appendix
	List of Figures
	List of Tables
	Bibliography

